Perspectivas del Biochar como vehículo para la inoculación de bacterias solubilizantes de fosfato: una revisión

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i1.24885

Palabras clave:

Fósforo disponible; Microorganismos solubilizantes; Inoculantes.

Resumen

El fósforo (P) juega un papel vital en muchos aspectos del crecimiento y desarrollo de las plantas. La baja cantidad de P disponible en los suelos agrícolas reduce la productividad de los cultivos y a menudo se aplican fertilizantes fosfatados. Sin embargo, debido a la alta afinidad del P por los constituyentes del suelo, la disponibilidad de este elemento se limita a las plantas. Así, se han estudiado técnicas alternativas, ecológicas y de bajo costo para mejorar la adquisición de P por los cultivos. Se han destacado los microorganismos capaces de solubilizar P, principalmente bacterias solubilizadoras de fosfato (BSF), ya que ofrecen un enfoque para superar la escasez de P mediante su introducción en sistemas agrícolas a través de inoculantes. En este trabajo, mostramos el potencial de los microorganismos solubilizantes de P y sus mecanismos de acción, el potencial de diferentes vehículos de inoculación, destacando también el biocarbón como un producto biológico viable para la producción de inoculantes. Los efectos combinados de estos factores (BSF y biochar) agregan varios beneficios al sistema suelo-planta. Los resultados de esta revisión demuestran que las enmiendas de biocarbón tienen un gran potencial como vehículo para la inoculación de BSF. Sin embargo, los estudios de biocarbón combinado con PSB aún son incipientes. La investigación futura debe centrar los esfuerzos en explorar cepas altamente eficientes, optimizar las condiciones y evaluar varias fuentes de desechos para la producción de biocarbón y su eficiencia en experimentos de campo.

Citas

Aamer, M., Shaaban, M. Hassan, M. U., Guoqin, H., Ying, L., Ying, T. H., Rasul, F., Qiaoying, M., Zhuanling, L., Rasheed, A. & Peng, Z. (2020). Biochar mitigates the N2O emissions from acidic soil by increasing the nosZ and nirK gene abundance and soil pH. Journal of Environmental Management, 255, 109891. https://doi.org/10.1016/j.jenvman.2019.109891

Ahemad, M. (2015). Phosphate-solubilizing bacteria-assisted phytoremediation of metalliferous soils: a review. 3 Biotech, 5(2), 111–121. https://doi.org/10.1007/s13205-014-0206-0

Akhtar, N., Iqbal, A., Qureshi, M. A. & Khan, K. H. (2010). Effect of phosphate solubilizing bacteria on the phosphorus availability and yield cotton. Journal of Scientific Research, 40(1),15–24

Ameen, F., AlYahya, S.A., AlNadhari, S., Alasmari, H., Alhoshani, F. & Wainwright, M. (2019). Phosphate solubilizing bacteria and fungi in desert soils: species, limitations and mechanisms. Archives of Agronomy and Soil Science, 65(10), 1446–1459. https://doi.org/10.1080/03650340.2019.1566713

Amoah-Antwi, C., Kwiatkowska-Malina, J., Thornton, S.F., Fenton, O., Malina, G. & Szara, E. (2020). Restoration of soil quality using biochar and brown coal waste: A review. Science of the Total Environment, 722, 137852. https://doi.org/10.1016/j.scitotenv.2020.137852

Anillo, H. J. B., Zentella, M. L. C. & Sierra, G. T. (2016). Burkholderia tropica Una Bacteria Con Gran Potencial Para Su Uso En La Agricultura. TIP Revista Especializada en Ciencias Químico-Biológicas, 19, 102–108. https://doi.org/10.1016/j.recqb.2016.06.003

Araújo, F. F. (2008). Seed inoculation with Bacillus subtilis, formulated with oyster meal and growth of corn, soybean and cotton. Ciência e Agrotecnologia, 32(2), 456–462

Arora, N. K. & Mishra, J. (2016). Prospecting the roles of metabolites and additives in future bioformulations for sustainable agriculture. Applied Soil Ecology, 107, 405–407. https://doi.org/10.1016/j.apsoil.2016.05.020

Bagyalakshmi, B., Ponmurugan, P. & Balamurugan, A. (2017). Potassium solubilization, plant growth promoting substances by potassium solubilizing bacteria (KSB) from southern Indian Tea plantation soil. Biocatalysis and Agricultural Biotechnology, 12, 116–124. https://doi.org/10.1016/j.bcab.2017.09.011

Bahadir, P. S., Liaqat, F. & Eltem, R. (2018). Plant growth promoting properties of phosphate solubilizing Bacillus species isolated from the Aegean Region of Turkey. Turkish Journal of Botany, 42(2), 183–196. https://doi.org/10.3906/bot-1706-51

Bashan, Y. & Levanony, H. (1990). Current status of Azospirillum inoculation technology: Azospirillum as a challenge for agriculture. Canadian Journal of Microbiology, 36(9), 591–608. https://doi.org/10.1139/m90-105

Bashan, Y., De-Bashan, L., Prabhu, S. R. & Hernandez, J. P. (2014). Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant and Soil, 378, 1–33. https://doi.org/10.1007/s11104-013-1956-x

Bashan, Y., De-Bashan, L. E. & Prabhu, S. R. (2016). Superior polymeric formulations and emerging innovative products of bacterial inoculants for sustainable agriculture and the environment. In: Singh, H., Sarma, B., Keswani, C. (eds) Agriculturally Important Microorganisms. Springer, Singapore. pp 15–46. https://doi.org/10.1007/978-981-10-2576-1_2

Behera, B. C., Singdevsachan, S. K., Mishra, R. R., Dutta, S. K. & Thatoi, H. N. (2014). Diversity, mechanism and biotechnology of phosphate solubilising microorganisms in mangrove- a review. Biocatalysis and Agricultural Biotechnology, 3, 97–110. https://doi.org/10.1016/j.bcab.2013.09.008

Belhardi, D., Lajudie, P., Ramdani, N., Roux, C. L., Boulila, P., Tisseyre, P., Boulila, A., Benguedouar, A., Kaci, Y. & Laguerre, G., (2018). Vicia faba L. in the Bejaia region of Algeria is nodulated by Rhizobium leguminosarum sv. viciae, Rhizobium laguerreae and two new genospecies. Systematic and Applied Microbiology, 41, 122–130.

Vassilev, N., Vassileva, M., Martos, V., Del Moral, L. F. G., Kowalska, J., Tylkowski, B. & Malusá, E. (2020). Formulation of Microbial Inoculants by Encapsulation in Natural Polysaccharides: Focus on Beneficial Properties of Carrier Additives and Derivatives. Frontiers in Plant Science, 11, 270. https://doi.org/10.3389/fpls.2020.00270

Butnan, S., Deenik, J. L., Toomsan, B., Antal, M. J. & Vityakon, P. (2015). Biochar characteristics and application rates affecting corn growth and properties of soils contrasting in texture and mineralogy. Geoderma, 237, 105–116.https://doi.org/10.1016/j.geoderma.2014.08.010

Cardoso, E. J. B. N. & Estrada-Bonilla, G. A. (2019). Inoculantes agrícolas. Biotecnologia Industrial: Processos fermentados e enzimáticos, Blucher, São Paulo.

Cavalcante, V. A. & Döbereiner, J. (1988). A new acid tolerant nitrogen-fixing bacterium associated with sugarcane. Plant and Soil, 108, 23–31. https://doi.org/10.1007/bf02370096

Chagas, L. F. B., Martins, A. L. L., de Carvalho Filho, M. R., de Oliveira Miller, L., de Oliveira, J. C. & Junior, A. F. C. (2017). Bacillus subtilis and Trichoderma sp. in biomass increase in soybean, beans, cowpea, corn and rice plants. Agri-Environmental Sciences, 3(2), 10–18.

Chen, M., Alim, N., Zhang, Y., Xu, N. & Cao, X. (2018). Contrasting effects of biochar nanoparticles on the retention and transport of phosphorus in acidic and alkaline soils. Environmental Pollution, 239, 562–570. https://doi.org/10.1016/j.envpol.2018.04.050

Cheng, J., Zhuang, W., Li, N. N., Tang, C. L. & Ying, H. J. (2017). Efficient biosynthesis of d-ribose using a novel co-feeding strategy in Bacillus subtilis without acid formation. Letters in Applied Microbiology, 64(1), 73–78. https://doi.org/10.1111/lam.12685

Chintala, R., Schumacher, T. E., McDonald, L. M., Clay, D. E, Malo, D. D., Papiernik, S. K., Clay, S. A. & Julson, J. L. (2014). Phosphorus sorption and availability from biochars and soil/biochar mixtures. Clean–Soil, Air, Water, 42(5), 626–634. https://doi.org/10.1002/clen.201300089

Cisneros-Rojas, C. A., Sánchez-de Prager, M. & Menjivar-Flores, J. C. (2017). Efecto de bacterias solubilizadoras de fosfatos sobre el desarrollo de plántulas de café. Agronomía Mesoamericana, 28(1), 149–158. https://doi.org/10.15517/am.v28i1.22021

Cortés-Patiño, S. & Bonilla, R. R. (2015). Polymers selection for a liquid inoculant of Azospirillum brasilense based on the Arrhenius thermodynamic model. African Journal of Biotechnology, 14(33), 2547–2553. https://doi.org/10.5897/ajb2015.14777

Donato, A., Maia, T. F., Conto, T. D., Pereira, M. G. & Fraga, M. E. (2019). Microbiota produtora de fitase isolada de solo e serapilheira do Bioma Cerrado. Ciência Florestal, 29(3), 1270–1281. https://doi.org/10.5902/1980509815586

Deaker, R., László, M., Rose, M. T., Amprayn, K., Ganisan, K., Tran, T. K. C., Nga, V. T., Cong, P. T., Hien, M. T. & Kennedy, I. R. (2011). Practical methods for the quality control of inoculant biofertilisers. Centre for International Agricultural Research, Australian.

Deaker, R., Roughley, R. J. & Kennedy, I. R. (2004). Legume seed inoculation technology-a review. Soil Biology & Biochemistry, 36(8), 1275–1288. https://doi.org/10.1016/j.soilbio.2004.04.009

Debode, J., Ebrahimi, N., D'Hose, T., Cremelie, P., Viaene, N. & Vandecasteele, B. (2020). Has compost with biochar added during the process added value over biochar or compost to increase disease suppression? Applied Soil Ecology, 153, 103571. https://doi.org/10.1016/j.apsoil.2020.103571

Döbereiner, J. & Day, J. M. (1976). Associative symbiosis in tropical grass: Characterization of microorganisms and dinitrogen fixing sites. Symposium on Nitrogen Fixation, Washington State Univ Press.

Du, J., Zhang, Y., Qu, M., Yin, Y., Fan, K., Hu, B., Zhang, H., Wei, M. & Ma, C. (2019). Effects of biochar on the microbial activity and community structure during sewage sludge composting. Bioresource Technology, 272, 171–179. https://doi.org/10.1016/j.biortech.2018.10.020

Dworzanski, J. P., Deshpande, S. V., Chen, R., Jabbour, R. E., Snyder, A. P., Wick, C. H. & Li, L. (2006). Mass spectrometry-based proteomics combined with bioinformatic tools for bacterial classification. Journal of Proteome Research, 5(1), 76–87. https://doi.org/10.1021/pr050294t.s001

EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. Dependência externa de fertilizantes NPK é debatida em Audiência Pública. Embrapa Notícias (2017)

Florentino, L. A., Silva, A. B., Landgraf, P. R. & Souza, F. R. (2017). Inoculação de bactérias produtoras de ácido 3-indol acético em plantas de alface (Lactuca sativa L.). Revista Colombiana de Ciencias Hortícolas, 11(1), 89–96. https://doi.org/10.17584/rcch.2017v11i1.5780

Foltran, E. C., Rocha, J. H. T., Bazani, J. H., de Moraes Goncalves, J. L., Rodrigues, M., Pavinato, P. & Garcia-Mina, J. M. (2019). Phosphorus pool responses under different P inorganic fertilizers for a eucalyptus plantation in a loamy Oxisol. Forest Ecology and Management, 435, 170-179. https://doi.org/10.1016/j.foreco.2018.10.053

Franchini, J. C., Crispino, C. C., Souza, R. A., Torres, E. & Hungria, M. (2007). Microbiological parameters as indicators of soil quality under various soil management and crop rotation systems in southern Brazil. Soil and Tillage Research, 92(1-2), 18–29. https://doi.org/10.1016/j.still.2005.12.010

Galindo, F. S., Teixeira Filho, M., Buzetti, S., Ludkiewicz, M. G., Rosa, P. A. & Tritapepe, C. A. (2018). Technical and economic viability of co-inoculation with Azospirillum brasilense in soybean cultivars in the Cerrado. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(1), 51–56. https://doi.org/10.1590/1807-1929/agriambi.v22n1p51-56

Gatiboni, L. C., Kaminski, J., dos Santos Rheinheimer, D. & Flores, J. P. C. (2007). Bioavailability of soil phosphorus forms in no tillage system. Revista Brasileira de Ciência do Solo, 31(4), 691–699.

Gupta, M., Kiran, S., Gulati, A., Singh, B. & Tewari, R. (2012). Isolation and identification of phosphate solubilizing bacteria able to enhance the growth and aloin-A biosynthesis of Aloe barbadensis Miller. Microbiological Research, 167(6), 358–363. https://doi.org/10.1016/j.micres.2012.02.004

Hajjam, Y. & Cherkaoui, S. (2017). The influence of phosphate solubilizing microorganisms on symbiotic nitrogen fixation: Perspectives for sustainable agriculture. Journal of Materials Science, 8(3), 801–808.

Hale, L., Luth, M. & Crowley, D. (2015). Biochar characteristics relate to its utility as an alternative soil inoculum carrier to peat and vermiculite. Soil Biology & Biochemistry, 81, 228–235. https://doi.org/10.1016/j.soilbio.2014.11.023

Howieson, J. G. & Dilworth, M. J. (2016). Working with rhizobia. Centre for International Agricultural Research, Canberra, Australian.

Hungria, M., Franchini, J. C., Campo, R. J. & Graham, P. H. (2005). The importance of nitrogen fixation to soybean cropping in South America. Nitrogen Fixation in Agriculture, Forestry, Ecology, and the Environment, 25–42. https://doi.org/10.1007/1-4020-3544-63

Husna, N., Budianta, D. & Napoleon, A. (2019). Evaluation of several biochar types as inoculant carrier for indigenous phosphate solubilizing microorganism from acid sulphate soil. Journal of Ecological Engineering, 20(6), 1–8. https://doi.org/10.12911/22998993/109078

Irfan, M., Zahir, A. Z., Asghar, H. N., Khan, M. Y., Ahmad, H. T. & Ali, Q. (2019). Effect of multi-strain bacterial inoculation with different carriers on growth and yield of maize under saline conditions. International Journal of Agriculture and Biology, 22, 1407–1414.

Jorquera, M. A., Hernández, M. T., Rengel, Z., Marschner, P. & de la Luz Mora, M. (2008). Isolation of culturable phosphobacteria with both phytate-mineralization and phosphate-solubilization activity from the rhizosphere of plants grown in a volcanic soil. Biology and Fertility of Soils, 44(8), 1025. https://doi.org/10.1007/s00374-008-0288-0

Kalayu, G. (2019). Phosphate solubilizing microorganisms: promising approach as biofertilizers. International Journal of Agronomy, 2019, 1–7. https://doi.org/10.1155/2019/4917256

Kang, S. M., Joo, G. J., Hamayun, M., Na, C. I., Shin, D. H., Kim, H. Y., Hong, J. K. & Lee, I. J. (2009). Gibberellin production and phosphate solubilization by newly isolated strain of Acinetobacter calcoaceticus and its effect on plant growth. Biotechnology Letters, 31(2), 277–281. https://doi.org/10.1007/s10529-008-9867-2

Khan, A. A., Jilani, G., Akhtar, M. S., Naqvi, S. M. S. & Rasheed, M. (2009). Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. Journal of Agricultural and Biological, Sciences 1(1):48–58.

Kucey, R. M. N., Janzen, H. H. & Leggett, M. E. (1989). Microbially mediated increases in plant-available phosphorus. Advances in Agronomy, 42, 199–228. https://doi.org/10.1016/s0065-2113(08)60525-8

Kumar, A. (2016). Phosphate solubilizing bacteria in agriculture biotechnology: diversity, mechanism and their role in plant growth and crop yield. International Journal of Advanced Research, 4(5), 116–124. https://doi.org/10.21474/ijar01/111

Lara, N., Figueroa, L., Carvajal, F., Zapata, Y., Urbina, C. & Escobar, H. (2013). Quantitative differentiation between soil organic carbon and biochar carbon in Aridisol. International Journal of Agriculture and Natural Resources, 40(2), 387–395. https://doi.org/10.4067/s0718-16202013000200013

Lee, K-E., Adhikari, A., Kang, S-M., You, Y-H., Joo, G-J., Kim, J-H., Kim, S-J. & Lee, I-J. (2019). Isolation and Characterization of the High Silicate and Phosphate Solubilizing Novel Strain Enterobacter ludwigii GAK2 that Promotes Growth in Rice Plants. Agronomy 9(3), 144–155. https://doi.org/10.3390/agronomy9030144

Lehmann, J., & Joseph, S. (2009). Biochar for environmental management: science and technology. Earthscan, 1, 1-12.

Li, H., Dong, X., da Silva, E. B., de Oliveira, L. M., Chen, Y. & Ma, L. Q. (2017). Mechanisms of metal sorption by biochars: biochar characteristics and modifications. Chemosphere, 178:466–478. https://doi.org/10.1016/j.chemosphere.2017.03.072

Li, S., Wang, S., Fan, M., Wu, Y. & Shangguan, Z. (2020). Interactions between biochar and nitrogen impact soil carbon mineralization and the microbial community. Soil and Tillage Research, 196, 104437. https://doi.org/10.1016/j.still.2019.104437

Liang, X., Jin, Y., He, M., Liu, Y., Hua, G., Wang, S. & Tian, G. (2017). Composition of phosphorus species and phosphatase activities in a paddy soil treated with manure at varying rates. Agriculture, Ecosystems & Environment, 237, 173–180. https://doi.org/10.1016/j.agee.2016.12.033

Liffourrena, A. S. & Lucchesi, G. I. (2018). Alginate-perlite encapsulated Pseudomonas putida A (ATCC 12633) cells: Preparation, characterization and potential use as plant inoculants. Journal of Biotechnology, 278, 28–33. https://doi.org/10.1016/j.jbiotec.2018.04.019

Lima, J. R. de S., de Moraes Silva, W., de Medeiros, E. V., Duda, G. P., Corrêa, M. M., Martins Filho, A. P., Clermont-Dauphin, C., Dantas, A. C. & Hammecker, C. (2018) Effect of biochar on physicochemical properties of a sandy soil and maize growth in a greenhouse experiment. Geoderma, 319, 14–23. https://doi.org/10.1016/j.geoderma.2017.12.033

Malusà, E., Pinzari, F. & Canfora, L. (2016). Efficacy of biofertilizers: challenges to improve crop production. Microbial Inoculants in Sustainable Agricultural Productivity, 17–40. https://doi.org/10.1007/978-81-322-2644-4_2

Manzoor, M., Abbasi, M. K. & Sultan, T. (2017) Isolation of phosphate solubilizing bacteria from maize rhizosphere and their potential for rock phosphate solubilization–mineralization and plant growth promotion. Geomicrobiology Journal, 34(1), 81–95. ttps://doi.org/10.1080/01490451.2016.1146373

Martinez, C. L. M., Jesus, M. S., Vakkilainen, E., Cardoso, M. & Almeida, G. M. (2019). Bioenergy Technology Solutions in Brazil. Brazilian Journal of Wood Science, 10(2), 112–122. https://doi.org/10.12953/2177-6830/rcm.v10n2p112-122

Martins Filho, A. P., de Medeiros, E. V., de Sousa Lima, J. R., Duda, G. P., de Moraes Silva, W., Antonino, A. C. D. & da Silva, J. S. A. (2020). Impact of coffee biochar on soil carbon, microbial biomass and enzymatic activities in Semiarid Sandy soil cultivated with maize. Revista Brasileira de Geografia Física, 13(02), 903–914. https://doi.org/10.26848/rbgf.v13.3.p903-914

Massenssini, A. M., Tótola, M. R., Borges, A. C. & Costa, M. D. (2015). Potential Phosphate Solubilization Mediated by Rhizospheric Microbiota of Eucalyptus Cultivated in a Typical Toposequence of the Zona da Mata, Minas Gerais. Revista Brasileira de Ciência do Solo, 39(3), 692–700. https://doi.org/10.18178/ijesd.2017.8.5.979

Medeiros, E. V., dos Santos, M. D. C. H., da Costa, D. P., Duda, G. P., de Oliveira, J. B., da Silva, J. A., Lima, J. R. S. & Hammecker, C. (2020). Effect of biochar and inoculation with Trichoderma aureoviride on melon growth and sandy Entisol quality. Australian Journal of Crop Science, 14(6), 971–977. https://doi.org/10.21475/ajcs.20.14.06.p2302

Medeiros, E. V., Moraes, M. C., Costa, D. P., Silva, J. S., Oliveira, J. B., Lima, J. R. S., Menezes, R. S. C. & Hammecker, C. (2020). Biochar and Trichoderma aureoviride applied to the sandy soil: effect on soil quality and watermelon growth. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(2), 735–751. https://doi.org/10.15835/nbha48211851

Medeiros, E. V., Silva, A. O., Duda, G. P., dos Santos, U. J. & de Souza Junior, A. J. (2019). The combination of Arachis pintoi green manure and natural phosphate improves maize growth, soil microbial community structure and enzymatic activities. Plant and Soil, 435(1), 175–185. https://doi.org/10.1007/s11104-018-3887-z

Mendes, I. D. C. & dos Reis Junior, F. B. (2003). Microrganismos e disponibilidade de fósforo (P) nos solos: uma análise crítica. Embrapa Cerrados, Documentos, Planaltina Brasil.

Mohamed, H. M. & Almaroai, Y. A. (2017). Effect of phosphate solubilizing bacteria on the uptake of heavy metals by corn plants in a long-term sewage wastewater treated soil. International Journal of Environmental Science and Development, 8(5), 366. https://doi.org/10.18178/ijesd.2017.8.5.979

Nadeem, S. M., Zahir, Z. A., Naveed, M. & Nawaz, S. (2013). Mitigation of salinity-induced negative impact on the growth and yield of wheat by plant growth-promoting rhizobacteria in naturally saline conditions. Annals of Microbiology, 63(1), 225–232. https://doi.org/10.1007/s13213-012-0465-0

Nakbanpote, W., Panitlurtumpai, N., Sangdee, A., Sakulpone, N., Sirisom, P. & Pimthong, A. (2014). Salt-tolerant and plant growth-promoting bacteria isolated from Zn/Cd contaminated soil: identification and effect on rice under saline conditions. Journal of Plant Interactions, 9(1), 379–387. https://doi.org/10.1080/17429145.2013.842000

Nobile, C. M., Bravin, M. N., Becquer, T. & Paillat, J. M. (2020). Phosphorus sorption and availability in an andosol after a decade of organic or mineral fertilizer applications: Importance of pH and organic carbon modifications in soil as compared to phosphorus accumulation. Chemosphere, 239, 124709. https://doi.org/10.1016/j.chemosphere.2019.124709

Ogut, M., Er, F. & Kandemir, N. (2010). Phosphate solubilization potentials of soil Acinetobacter strains. Biology and Fertility of Soils, 46(7), 707–715. https://doi.org/10.1007/s00374-010-0475-7

Okon, Y. & Labandera-Gonzalez, C. A. (1994). Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biology & Biochemistry, 26(12), 1591–1601. https://doi.org/10.1016/0038-0717(94)90311-5

Olivares, F. L., Baldani, V. L., Reis, V. M., Baldani, J. I. & Döbereiner, J. (1996). Occurrence of the endophytic diazotrophs Herbaspirillum spp. in roots, stems, and leaves, predominantly of Gramineae. Biology and Fertility of Soils, 21(3), 197–200. https://doi.org/10.1007/s003740050049

Oliveira Filho, J. S., Ferrari, A. C., Pereira, M. G., Pinto, L. A. D. S. R., Zonta, E. & Matos, T. S. (2020). Phosphorus accumulation in soil after successive applications of swine manure: a long-term study in Brazil. Environmental Earth Sciences, 79(2), 62. https://doi.org/10.1007/s12665-019-8805-z

Owen, D., Williams, A. P., Griffith, G. W. & Withers, P. J. (2015). Use of commercial bio-inoculants to increase agricultural production through improved phosphrous acquisition. Applied Soil Ecology, 86, 41–54. https://doi.org/10.1016/j.apsoil.2014.09.012

Paiva, C. A. O., Marriel, I. E., Gomes, E. A., Cota, L. V., dos Santos, F. C., Tinoco, S. M. S., Lana, U. G. P., Oliveira, M. C., Mattos, B. B., Alves, V. M. C., Ribeiro, V. P. & Vasco Junior, R. (2020). Recomendação agronômica de cepas de Bacillus subtilis e Bacillus megaterium na cultura do milho. Embrapa Milho e Sorgo, Circular Técnica.

Palansooriya, K. N., Wong, J. T. F., Hashimoto, Y., Huang, L., Rinklebe, J., Chang, S. X., Bolan, N., Wang, H. & Ok, Y. S. (2019). Response of microbial communities to biochar-amended soils: a critical review. Biochar 1(1), 3–22. https://doi.org/10.1007/s42773-019-00009-2

Pandey, D., Daverey, A. & Arunachalam, K. (2020). Biochar: Production, properties and emerging role as a support for enzyme immobilization. Journal of Cleaner Production, 255, 120267. https://doi.org/10.1016/j.jclepro.2020.120267

Perin, L., Martínez-Aguilar, L., Paredes-Valdez, G., Baldani, J. I., Estrada-De Los Santos, P., Reis, V. M., Caballero-Mellado, J. (2006). Burkholderia silvatlantica sp. nov., a diazotrophic bacterium associated with sugar cane and maize. International Journal of Systematic and Evolutionary Microbiology, 56(8), 1931–1937. https://doi.org/10.1099/ijs.0.64362-0

Pikovskaya, R. I. (1948). Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya, 17, 362–370.

Posso, E. J. S. & de Prager, M. S. (2017). Production of organic acids by rhizosphere microorganisms isolated from a Typic Melanudands and its effects on the inorganic phosphates solubilization. Acta Agronómica, 66(2), 1–23.

Prabhu, N., Borkar, S. & Garg, S. (2018). Phosphate solubilization mechanisms in alkaliphilic bacterium Bacillus marisflavi FA7. Current Science, 114(4), 845–853. https://doi.org/10.18520/cs/v114/i04/845-853

Prabhu, N., Borkar, S. & Garg, S. (2019). Phosphate solubilization by microorganisms: overview, mechanisms, applications and advances. Advances in Biological Science Research, 161–176. https://doi.org/10.1016/B978-0-12-817497-5.00011-2

Qian, L., Chen, Y., Ouyang, D., Zhang, W., Han, L., Yan, J., Kvapil, P. & Chen, M. (2020). Field demonstration of enhanced removal of chlorinated solvents in groundwater using biochar-supported nanoscale zero-valent iron. Science of the Total Environment, 698, 134215. https://doi.org/10.1016/j.scitotenv.2019.134215

Razzaghi, F., Obour, P. B. & Arthur, E. (2020). Does biochar improve soil water retention? A systematic review and meta-analysis. Geoderma, 361, 114055. https://doi.org/10.1016/j.geoderma.2019.114055

Reis, M., Olivares, F. L. & Döbereiner, J. (1994). Improved methodology for isolation of Acetobacter diazotrophicus and confirmation of its endophytic habitat. World Journal of Microbiology & Biotechnology, 10(4), 401–405. https://doi.org/10.1007/bf00144460

Reetha, S., Bhuvaneswari, G., Thamizhiniyan, P. & Mycin, T. R. (2014). Isolation of indole acetic acid (IAA) producing rhizobacteria of Pseudomonas fluorescens and Bacillus subtilis and enhance growth of onion (Allim cepa L.). International Journal of Current Microbiology and Applied Sciences, 3(2), 568–574.

Santos, D. R. D., Gatiboni, L. C. & Kaminski, J. (2008). Factors affecting the phosphorus availability and the fertilization management in no-tillage system. Ciência Rural, 38(2), 576–586.

Satyaprakash, M., Nikitha, T., Reddi, E. U. B., Sadhana, B. & Vani, S. S. (2017). Phosphorous and phosphate solubilising bacteria and their role in plant nutrition. International Journal of Current Microbiology and Applied Sciences, 6(4), 2133–2144. https://doi.org/10.20546/ijcmas.2017.604.251

Schmalenberger, A. & Fox, A. (2016). Bacterial mobilization of nutrients from biochar-amended soils. In: Gadd GM, Sariaslani S (Eds.), Advances in Applied Microbiology, Academic Press, pp 109–159. https://doi.org/10.1016/bs.aambs.2015.10.001

Shahzad, S., Khan, M. Y., Zahir, Z. A., Asghar, H. N. & Chaudhry, U. K. (2017). Comparative effectiveness of different carriers to improve the efficacy of bacterial consortium for enhancing wheat production under salt affected field conditions. Pakistan Journal of Botany, 49(4), 1523–1530.

Shi, W., Ju, Y., Bian, R., Li, L., Joseph, S., Mitchell, D. R., Munroe, P., Taherymoosavi, S. & Pan, G. (2020). Biochar bound urea boosts plant growth and reduces nitrogen leaching. Science of the Total Environment, 701, 134424. https://doi.org/10.1016/j.scitotenv.2019.134424

Silva, M. F. D., Oliveira, P. J. D., Xavier, G. R., Rumjanek, N. G. & Reis, V. M. (2009). Inoculants containing polymers and endophytic bacteria for the sugarcane crop. Pesquisa Agropecuária Brasileira, 44(11), 1437–1443.

Silva, M. F., de Souza Antônio, C., de Oliveira, P. J., Xavier, G. R., Rumjanek, N. G,, de Barros Soares, L. H. & Reis, V. M. (2012). Survival of endophytic bacteria in polymer-based inoculants and efficiency of their application to sugarcane. Plant and Soil, 356(1-2), 231–243. https://doi.org/10.1007/s11104-012-1242-3

Singleton, P., Keyser, H. & Sande, E. (2002). Development and evaluation of liquid inoculants. Inoculants and nitrogen fixation of legumes in Vietnam. ACIAR Proceedings 109e, Canberra 52–66.

Sivakumar, P. K., Parthasarthi, R. & Lakshmipriya, V. P. (2014). Encapsulation of plant growth promoting inoculant in bacterial alginate beads enriched with humic acid. International Journal of Current Microbiology and Applied Sciences, 3(6), 415–422.

Smith, R. S. (1992). Legume inoculant formulation and application. Canadian Journal of Microbiology, 38(6), 485–492. https://doi.org/10.1139/m92-080

Sousa, G. G., Thales, V. D. A., Braga, E. S., de Azevedo, B. M., Marinho, A. B. & Borges, F. R. (2013). Fertigation with bovine biofertilizer: Effects on growth, gas exchang and yield of physic nut (Jatropha curcas). Revista Brasileira de Ciências Agrárias, 8(3), 503–509.

Stephens, J. H. G. & Rask, H. M. (2000). Inoculant production and formulation. Field Crops Research, 65(2-3), 249–258. https://doi.org/10.1016/s0378-4290(99)00090-8

Szilagyi-Zecchin, V. J., Mógor, Á. F., Ruaro, L. & Röder, C. (2015). Tomato seedlings growth (Solanum lycopersicum) promoted by bacteria Bacillus amyloliquefaciens subsp. Plantarum FZB42 in organic system. Revista de Ciências Agrárias, 38(1), 26–33.

Teng, Z., Shao, W., Zhang, K., Huo, Y. & Li, M. (2019). Characterization of phosphate solubilizing bacteria isolated from heavy metal contaminated soils and their potential for lead immobilization. Journal of Environmental Management, 231, 189–197. https://doi.org/10.1016/j.jenvman.2018.10.012

Vance, C. P., Uhde‐Stone, C. & Allan, D. L. (2003). Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytologist, 157(3), 423–447. https://doi.org/10.1046/j.1469-8137.2003.00695.x

Vassilev, N., Eichler-Löbermann, B. & Vassileva, M. (2012). Stress-tolerant P-solubilizing microorganisms. Applied Microbiology and Biotechnology, 95(4), 851–859. https://doi.org/10.1007/s00253-012-4224-8

Walpola, B. C. & Yoon, M. H. (2012). Prospectus of phosphate solubilizing microorganisms and phosphorus availability in agricultural soils: A review. African Journal of Microbiology Research, 6(37), 6600–6605. https://doi.org/10.5897/ajmr12.889

Wang, J., Xiong, Z. & Kuzyakov, Y. (2016). Biochar stability in soil: meta-analysis of decomposition and priming effects. Gcb-Bioenergy, 8(3), 512–523. https://doi.org/10.1111/gcbb.12266

Withers, P. J., Rodrigues, M., Soltangheisi, A., De Carvalho, T. S., Guilherme, L. R., Benites, V. D. M., Gatiboni, L. C., de Sousa, D. M. G., Nunes, R. S., Rosolem, C. A., Andreote, F. D., Oliveira Jr, A., Coutinho, E. L. M. & Pavinato, P. S. (2018). Transitions to sustainable management of phosphorus in Brazilian agriculture. Scientific Reports, 8(1), 1–13. https://doi.org/10.1038/s41598-018-20887-z

Yan, Y., Sarkar, B., Zhou, L., Zhang, L., Li, Q., Yang, J. & Bolan, N. (2020). Phosphorus-rich biochar produced through bean-worm skin waste pyrolysis enhances the adsorption of aqueous lead. Environmental Pollution, 266, 115177. https://doi.org/10.1016/j.envpol.2020.115177

Ye, S., Zeng, G., Tan, X., Wu, H., Liang, J., Song, B., Tanga, N., Zhanga, P., Yanga, Y., Chena, Q. & Li, X. (2020). Nitrogen-doped biochar fiber with graphitization from Boehmeria nivea for promoted peroxymonosulfate activation and non-radical degradation pathways with enhancing electron transfer. Applied Catalysis B: Environmental, 269, 118850. https://doi.org/10.1016/j.apcatb.2020.118850

Zhu, J., Li, M. & Whelan, M. (2018). Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: a review. Science of the Total Environment, 612, 522–537. https://doi.org/10.1016/j.scitotenv.2017.08.095

Zuffo, A. M., Bruzi, A. T., de Rezende, P. M., de Carvalho, M. L. M., Zambiazzi, E. V., Soares, I. O. & Silva, K. B. (2016). Foliar application of Azospirillum brasilense in soybean and seed physiological quality. African Journal of Microbiology Research, 10(20), 675–680. https://doi.org/10.5897/ajmr2016.7911

Descargas

Publicado

08/01/2022

Cómo citar

FRANÇA, R. F. da .; MEDEIROS, E. V. de .; SILVA, R. O. .; FAUSTO, R. A. da S. .; SOUZA, C. A. F. de .; OLIVEIRA, J. B. de .; LIMA, J. R. de S. .; ARAÚJO, A. P. Perspectivas del Biochar como vehículo para la inoculación de bacterias solubilizantes de fosfato: una revisión. Research, Society and Development, [S. l.], v. 11, n. 1, p. e36211124885, 2022. DOI: 10.33448/rsd-v11i1.24885. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/24885. Acesso em: 15 ene. 2025.

Número

Sección

Revisiones