Efecto del uso de cloruro de metiltrietilamonio individualmente y combinado con n-butilamina sobre las características del proceso de cristalización de zeolita ZSM-12

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i1.25402

Palabras clave:

Zeolita ZSM-12; Agente director de estructura; Cloruro de metiltrietilamonio; n-butilamina; Propiedades fisicoquímicas.

Resumen

La mejora de la estructura de la zeolita ZSM-12 ha sido ampliamente estudiada, debido a sus propiedades de selectividad de forma, acidez y estabilidad hidrotermal. Esta zeolita se utiliza en una amplia gama de aplicaciones, como adsorbente, intercambiador de iones y en reacciones importantes. en el área petroquímica. En este trabajo se estudió el efecto sobre las características de cristalización y propiedades fisicoquímicas de la zeolita ZSM-12 utilizando cloruro de metiltrietilamonio, individualmente y combinado con n-butilamina, como agente director de estructura. Las síntesis se realizaron a 160 y 170 °C entre 48 y 144 h en medio estático. Las muestras obtenidas se caracterizaron mediante las técnicas de difracción de rayos X, análisis térmico, adsorción-desorción de nitrógeno y desorción de amoniaco programada por temperatura. El uso simultáneo de cloruro de metiltrietilamonio y n-butilamina, en una proporción de 0,2, promovió la obtención de ZSM-12 altamente cristalino, con aumento del área microporosa y acidez, lo que denota una mejora en las propiedades fisicoquímicas de esta zeolita.

Citas

Barrer, R. M. (1948). Synthesis of a zeolitic mineral with chabazite-like sorptive properties, Journal of the Chemical Society, 2, 127–132. https://doi.org/10.1039/JR9480000127

Cao, P., Li, B., Sun, W. & Zhao, L. (2021). Understanding the Zeolites Catalyzed Isobutane Alkylation based on Their Topology Effects on the Reactants Adsorption, Chemical Engineering Science, 250, 117387.https://doi.org/10.1016/j.ces.2021.117387

Carvalho, K. T. G. & Urquieta-Gonzalez, E. A. (2015). Microporous–mesoporous ZSM-12 zeolites: Synthesis by using a soft template and textural, acid and catalytic properties, Catalysis Today, 243, 92-102.https://doi.org/10.1016/j.cattod.2014.09.025

Catizzone, E., Cirelli, Z., Aloise, A., Lanzafame, P., Migliori, M. & Giordano, G. (2018). Methanol conversion over ZSM-12, ZSM-22 and EU-1 zeolites: from DME to hydrocarbons production, Cataysis. Today, 304, 39-50. https://doi.org/10.1016/j.cattod.2017.08.037

Chen, Y., Li, C., Chen, X., Liu, Y. & Liang, C. (2018). Synthesis of ZSM-23 zeolite with dual structure directing agents for hydroisomerization of n-hexadecane, Microporous and Mesoporous Materials, 268, 216-224. https://doi.org/10.1016/j.micromeso.2018.04.033

Chokkalingam, A., Kawagoe, H., Watanabe, S., Moriyama, Y., Komura, K., Kubota, Y., Kim, J.-H., Seo, G., Vinu, A. & Sugi, Y. (2013). Isopropylation of biphenyl over ZSM-12 zeolites, Journal of Molecular Catalysis A: Chemical, 367, 23-30. https://doi.org/10.1016/j.molcata.2012.10.018

Dimitrov, L., Mihaylov, M., Hadjiivanov, K. & Mavrodinova, V. (2011). Catalytic properties and acidity of ZSM-12 zeolite with different textures, Microporous and Mesoporous Materials, 143(2-3), 291-301. https://doi.org/10.1016/j.micromeso.2011.03.009

Figueiredo, B. R., Cardoso, S. P., Portugal, I., Rocha, J., Silva, C. M. (2018). Inorganic Ion Exchangers for Cesium Removal from Radioactive Wastewater, Separation & Purification Reviews, 47(4), 306-336.

https://doi.org/10.1080/15422119.2017.1392974

Gopal, S., Yoo, K. & Smirniotis, P. G. (2001). Synthesis of Al-rich ZSM-12 using TEAOH as template, Microporous and Mesoporous Materials, 49(1-3), 149-156. https://doi.org/10.1016/S1387-1811(01)00412-7

Glotov, A., Demikhova, N., Rubtsova, M., Melnikov, D.., Tsaplin, D., Gushchin, P., Egazar’yants, S., Maximov, A., Karakhanov, E. & Vinokurov, V. (2021). Bizeolite Pt/ZSM-5:ZSM-12/Al2O3 catalyst for hydroisomerization of C-8 fraction with various ethylbenzene content, Catalysis Today, 378, 83-95. https://doi.org/10.1016/j.cattod.2021.02.008

Han, B., Lee, S.-H., Shin, C.-H., Cox, P. A. & Hong, S. B. (2005). Zeolite Synthesis Using Flexible Diquaternary Alkylammonium Ions (CnH2n+1)2HN+(CH2)5N+H(CnH2n+1)2 with n = 1−5 as Structure-Directing Agents, Chemistry of Materials, 17(3), 477–486. https://doi.org/10.1021/cm048418+

Holland, B. T., Abrams, L. & Stein, A. (1999). Dual Templating of Macroporous Silicates with Zeolitic Microporous Frameworks, Journal of the American Chemical Society, 121(17), 4308–4309. https://doi.org/10.1021/ja990425p

Imyen, T., Saenluang, K., Dugkhuntod, P. & Wattanakit, C. (2021). Investigation of ZSM-12 nanocrystals evolution derived from aluminosilicate nanobeads for sustainable production of ethyl levulinate from levulinic acid esterification with ethanol, Microporous and Mesoporous Materials, 312, 110768. https://doi.org/10.1016/j.micromeso.2020.110768

Kasunič, M., Legiša, J., Meden, A., Loga, N. Z., Beale, A. M. & Golobič, A. (2009). Crystal structure of pure-silica ZSM-12 with tetraethylammonium cations from X-ray powder diffraction data, Microporous and Mesoporous Materials, 122(1-3), 255-263. https://doi.org/10.1016/j.micromeso.2009.03.008

Kore, R. & Srivastava, R. (2012). Synthesis of zeolite Beta, MFI, and MTW using imidazole, piperidine, and pyridine based quaternary ammonium salts as structure directing agents, RSC Advances, 2(26), 10072-10084. https://doi.org/10.1039/C2RA20437A

Kosareva, Gerasimov, D. N., Maslov, I. A., Pigoleva, I. V., Zaglyadova, S. V. & Fadeev, V. V. (2021). Effect of the Zeolite Type on Catalytic Performance in Dewaxing of the Diesel Fraction under Sour Conditions, Energy & Fuels, 35(19), 16020–16034. https://doi.org/10.1021/acs.energyfuels.1c01484

Kulikov, L. A., Tsaplin, D. E., Knyazeva, M. I., Levin, I. S., Kardashev, S. V., Filippova, T. Y., Maksimov, A. L. & Karakhanov, E. A. (2019). Effect of Template Structure on the Zeolite ZSM-12 Crystallization Process Characteristics, Petroleum Chemistry, 59(S1), S60–S65. https://doi.org/10.1134/S0965544119130097

Kwon, S., Kim, C., Han, E., Lee, H., Cho, H. S. & Choi, M. (2021). Relationship between zeolite structure and capture capability for radioactive cesium and strontium, Journal of Hazardous Materials, 408, 124419. https://doi.org/10.1016/j.jhazmat.2020.124419

Lee, H. J., Kim, S. H., Kim, J. H., Park, S. J. & Cho, S. J. (2014). Synthesis and characterization of zeolites MTT and MFI, with controlled morphologies using mixed structure directing agents, Microporous and Mesoporous Materials, 195, 205-215. https://doi.org/10.1016/j.micromeso.2014.04.035

Li, C., Li, L., Wu, W., Wang, D., Toktarev, A. V., Kikhtyanin, O. V. & Echevskii, G.V. (2011). Highly selective synthesis of 2,6-dimethylnaphthalene over alkaline treated ZSM-12 zeolite, Procedia Engineering, 18, 200-205. https://doi.org/10.1016/j.proeng.2011.11.032

Li, J., Lou, L.-L., Xu, C. & Liu, S. (2014). Synthesis, characterization of Al-rich ZSM-12 zeolite and their catalytic performance in liquid-phase tert-butylation of phenol, Catalysis Communications, 50, 97-100. https://doi.org/10.1016/j.catcom.2014.03.011

Lok, B. M., Marcus, B. K. & Angell, C. L. (1986). Characterization of zeólita acidity. II. Measurement of zeólita acidity by ammonia temperature programmed desorption and FT-IR Spectroscopy techniques. Zeolites, 6(3), 185-194. https://doi.org/10.1016/0144-2449(86)90046-1

Masoumifard, N., Kaliaguine, S. & Kleitz, F. (2016). Synergy between structure direction and alkalinity toward fast crystallization, controlled morphology and high phase purity of ZSM-12 zeolite, Microporous and Mesoporous Materials, 227, 258-271. https://doi.org/10.1016/j.micromeso.2016.02.044

Margarit, V. J., Martínez-Armero, M. E., Navarro, M. T., Martínez, C. & Corma, A. (2015). Direct Dual-Template Synthesis of MWW Zeolite Monolayers, Angewandte Chemie International Edition, 54(46), 13724-13728. https://doi.org/10.1002/anie.201506822

Mehla, S., Krishnamurthy, K. R., Viswanathan, B., John, M., Niwate, Y., Kumar, S. A. K., Pai, S. M. & Newalkar, B. L. (2013). n-Hexadecane hydroisomerization over BTMACl/TEABr/MTEABr templated ZSM-12, Microporous and Mesoporous Materials, 177, 120-126. https://doi.org/10.1016/j.micromeso.2013.05.001

Milton, R. M. (1959). Molecular sieve adsorbents, U.S. pat. 2,882,243.

Moini, A., Schmitt, K. D., Valyocsik, E. W. & Polomski, R. F. (1994). The Role of Diquaternary Cations as Directing Agents in Zeolite Synthesis, Studies in Surface Science and Catalysis, 84, 23-28. https://doi.org/10.1016/S0167-2991(08)64075-6

Počkaj, M., Meden, A., Logar, N. Z., Rangus, M., Mali, G., Lezcano-Gonzalez, I., Beale, A. M. & Golobič, A. (2018). Structural investigations in pure-silica and Al-ZSM-12 with MTEA or TEA cátions, Microporous and Mesoporous Materials, 263, 236-242. https://doi.org/10.1016/j.micromeso.2017.12.015

Rani, P., Srivastava, R. & Satpati, B. (2016). One-Step Dual Template Mediated Synthesis of Nanocrystalline Zeolites of Different Framework Structures, Crystal Growth & Design, 16(6), 3323–3333. https://doi.org/10.1021/acs.cgd.6b00299

Rodeghero, E., Pasti, L., Nunziante, G., Chenet, T., Gigli, L., Plaisier, J. R. & Martucci, A. (2019). Highlighting the capability of zeolites for agro-chemicals contaminants removal from aqueous matrix: Evidence of 2-ethyl-6-methylaniline adsorption on ZSM-12, American Mineralogist, 104(3), 317–324. https://doi.org/10.2138/am-2019-6754

Rollmann, L. D., Schlenker, J. L., Lawton, S. L., Kennedy, C. L., Kennedy, G. J. & Doren, D. J. (1999). On the Role of Small Amines in Zeolite Synthesis, The Journal of Physical Chemistry B, 103(34), 7175-7183. https://doi.org/10.1021/jp991913m

Rosinski, E. J. & Rubin, M. K. (1974). Crystalline Zeolite ZSM-12, U.S. Patent 3 832 449.

Sanhoob, M., Muraza, O., Yamani, Z. H., Al-Mutairi, E. M., Tago, T., Merzougui, B. & Masuda, T. (2014). Synthesis of ZSM-12 (MTW) with different Al-source: Towards understanding the effects of crystallization parameters, Microporous and Mesoporous Materials, 194, 31-37. https://doi.org/10.1016/j.micromeso.2014.03.033

Sanhoob, M. A., Muraza, O., Yoshioka, M., Qamaruddin, M. & Yokoi, T. (2018). Lanthanum, cerium, and boron incorporated ZSM-12 zeolites for catalytic cracking of n-hexane, Journal of Analytical and Applied Pyrolysis, 129, 231-240. https://doi.org/10.1016/j.jaap.2017.11.007

Santos, M. R. F., Pedrosa, A. M. G. & Souza, M. J. B. (2016). Oxidative desulfurization of thiophene on TiO2/ZSM-12 zeolite, Materials Research, 19(1), 24-30. https://doi.org/10.1590/1980-5373-MR-2015-0130

Silva, A. O. S., Souza, M. J. B., Pedrosa, A. M. G., Coriolano, A. C. F., Fernandes Jr. V. J. & Araujo, A. S. (2017). Development of HZSM-12 zeolite for catalytic degradation of high-density polyethylene, Microporous and Mesoporous Materials, 244, 1-6. https://doi.org/10.1016/j.micromeso.2017.02.049

Toktarev, A. V. & Ione, K. G. (1997). Studies on crystallization of ZSM-12 type zeolite, Studies in Surface Science and Catalysis, 105, 333-340. https://doi.org/10.1016/S0167-2991(97)80573-3

Treacy, M. M. J. & Higgins, J. B. (2007). Collection of Simulated XRD Powder Patterns for Zeolites, (5th. ed.), Elsevier.

Veselý, O., Pang, H., Vornholt, S. M., Mazur, M. & Yu, J. (2019). Opanasenko, M., Eliášová, P. Hierarchical MTW zeolites in tetrahydropyranylation of alcohols: Comparison of bottom-up and top-down methods, Catalysis Today, 324, 123-134. https://doi.org/10.1016/j.cattod.2018.06.010

Wang, B., Tian, Z., Li, P., Wang, L., Xu, Y., Qu, W., Ma, H., Xu, Z. & Lin, L. (2009). Synthesis of ZSM-23/ZSM-22 intergrowth zeolite with a novel dual-template strategy, Materials Research Bulletin, 44(12), 2258-2261. https://doi.org/10.1016/j.materresbull.2009.07.017

Wei, X. & Smirniotis, P. G. (2006). Development and characterization of mesoporosity in ZSM-12 by desilication, Microporous and Mesoporous Materials, 97(1–3), 97-106. https://doi.org/10.1016/j.micromeso.2006.01.024

Descargas

Publicado

14/01/2022

Cómo citar

GOUVEIA, E. G. C.; ALENCAR, S. L.; SILVA, B. J. B. da; URBINA, M. M.; SOLANO, J. da R. S.; SILVA, A. O. S. da. Efecto del uso de cloruro de metiltrietilamonio individualmente y combinado con n-butilamina sobre las características del proceso de cristalización de zeolita ZSM-12. Research, Society and Development, [S. l.], v. 11, n. 1, p. e54311125402, 2022. DOI: 10.33448/rsd-v11i1.25402. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/25402. Acesso em: 26 dic. 2024.

Número

Sección

Ingenierías