Uso de CRISPR-Cas en plásmidos conjugativos para controlar la propagación de la resistencia a los antibióticos en Enterococcus: una revisión de la literatura.
DOI:
https://doi.org/10.33448/rsd-v11i3.26179Palabras clave:
Sistema CRISPR-Cas; Plásmido conjugativo; Resistencia antimicrobiana; Enterococcus.Resumen
Justificación: Existe un sólido llamado a nivel mundial para controlar el uso de antimicrobianos asociado con nuevos enfoques terapéuticos contra infecciones multirresistentes, como las causadas por las especies E. faecalis y E. faecium, patógenos comensales oportunistas generalmente presentes en infecciones relacionadas con la atención de la salud. (HAI). La alta adaptabilidad de estos patógenos al ambiente nosocomial y la adquisición de genes de resistencia y virulencia se encuentran entre los principales factores que contribuyen al empeoramiento de estas infecciones. CRISPR-Cas actúa como un sistema de defensa bacteriano, seleccionado evolutivamente debido a la asociación de bacterias con virus, presente en algunas cepas de E. faecalis y E. faecium. Se especula que CRISPR-Cas podría usarse en diferentes vectores, incluidos plásmidos conjugativos, para editar e inactivar genes de resistencia. Objetivos: investigar el uso de CRISPR-Cas en plásmidos conjugativos para controlar la propagación de cepas de enterococos multirresistentes. Metodología: Esta es una revisión basada en el alcance, aplicando criterios de selección e inclusión de estudios en el intervalo de tiempo entre 2016 y 2021. Conclusión: Las herramientas de edición molecular, como CRISPR-Cas, pueden ser alternativas prometedoras en el control de infecciones multirresistentes y contribuir al control de la propagación hospitalaria. Las cepas que no cuentan con este sistema son más susceptibles de adquirir elementos genéticos móviles, adquiriendo genes de resistencia y virulencia. La aplicabilidad de CRISPR-Cas en plásmidos conjugativos es un método innovador y factible, capaz de interferir en la adquisición de elementos genéticos móviles, y en consecuencia, reducir la expresión de resistencia y virulencia, tanto en el género Enterococcus como en otros.
Citas
Ahmed, W.; Hafeez, M. A.; Ahmad, R.; Mahmood, S. CRISPR-Cas system in regulation of immunity and virulence of bacterial pathogens. Gene Reports, [S.L.], v. 13, p. 151-157, dez. 2018. Elsevier BV. http://dx.doi.org/10.1016/j.genrep.2018.10.004
Alemayehu, T., & Hailemariam, M. (2020). Prevalence of vancomycin-resistant enterococcus in Africa in one health approach: a systematic review and meta-analysis. Scientific reports, 10(1), 20542. https://doi.org/10.1038/s41598-020-77696-6
Bender, E. A., de Freitas, A. L., Reiter, K. C., Lutz, L., & Barth, A. L. (2009). Identification, antimicrobial resistance and genotypic characterization of Enterococcus spp. isolated in Porto Alegre, Brazil. Brazilian journal of microbiology: [publication of the Brazilian Society for Microbiology], 40(3), 693–700. https://doi.org/10.1590/S1517-838220090003000035
CDC. (2019). Antibiotic resistance threats in the United States, 2019. antibiotic resistance threats in the united states. https://doi.org/10.15620/cdc:82532
Chen, S., Liu, H., Liang, W., Hong, L., Zhang, B., Huang, L., Guo, X., & Duan, G. (2019). Insertion sequences in the CRISPR-Cas system regulate horizontal antimicrobial resistance gene transfer in Shigella strains. International journal of antimicrobial agents, 53(2), 109–115. https://doi.org/10.1016/j.ijantimicag.2018.09.020
Fuente-Nunez, C., Torres, M. D., Mojica, F. J., & Lu, T. K. (2017). Next-generation precision antimicrobials: towards personalized treatment of infectious diseases. Current opinion in microbiology, 37, 95–102. https://doi.org/10.1016/j.mib.2017.05.014
Maat, V., Stege, P. B., Dedden, M., Hamer, M., van Pijkeren, J. P., Willems, R., & van Schaik, W. (2019). CRISPR-Cas9-mediated genome editing in vancomycin-resistant Enterococcus faecium. FEMS microbiology letters, 366(22), fnz256. https://doi.org/10.1093/femsle/fnz256
Dong, H., Xiang, H., Mu, D., Wang, D., & Wang, T. (2019). Exploiting a conjugative CRISPR/Cas9 system to eliminate plasmid harbouring the mcr-1 gene from Escherichia coli. International journal of antimicrobial agents, 53(1), 1–8. https://doi.org/10.1016/j.ijantimicag.2018.09.017
Dos Santos, B. A., de Oliveira, J., Parmanhani-da-Silva, B. M., Ribeiro, R. L., Teixeira, L. M., & Neves, F. (2020). CRISPR elements and their association with antimicrobial resistance and virulence genes among vancomycin-resistant and vancomycin-susceptible enterococci recovered from human and food sources. Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases, 80, 104183. https://doi.org/10.1016/j.meegid.2020.104183
Fage, C., Lemire, N., & Moineau, S. (2021). Delivery of CRISPR-Cas systems using phage-based vectors. Current opinion in biotechnology, 68, 174–180. https://doi.org/10.1016/j.copbio.2020.11.012
Fagen, J. R.; Collias, D.; Singh, A. K.; Beisel, C. L. Advancing the design and delivery of CRISPR antimicrobials. Current Opinion In Biomedical Engineering, [S.L.], v. 4, p. 57-64, dez. 2017. Elsevier BV. http://dx.doi.org/10.1016/j.cobme.2017.10.001.
Gholizadeh, P., Köse, Ş., Dao, S., Ganbarov, K., Tanomand, A., Dal, T., Aghazadeh, M., Ghotaslou, R., Ahangarzadeh Rezaee, M., Yousefi, B., & Samadi Kafil, H. (2020). How CRISPR-Cas System Could Be Used to Combat Antimicrobial Resistance. Infection and drug resistance, 13, 1111–1121. https://doi.org/10.2147/IDR.S247271
Gilmore, M. S., Clewell, D. B., Ike, Y., & Shankar, N. (Eds.). (2014). Enterococci: From Commensals to Leading Causes of Drug Resistant Infection. Massachusetts Eye and Ear Infirmary.
Graham, C. E., Cruz, M. R., Garsin, D. A., & Lorenz, M. C. (2017). Enterococcus faecalis bacteriocin EntV inhibits hyphal morphogenesis, biofilm formation, and virulence of Candida albicans. Proceedings of the National Academy of Sciences of the United States of America, 114(17), 4507–4512. https://doi.org/10.1073/pnas.1620432114
Gupta, D., Bhattacharjee, O., Mandal, D., Sen, M. K., Dey, D., Dasgupta, A., Kazi, T. A., Gupta, R., Sinharoy, S., Acharya, K., Chattopadhyay, D., Ravichandiran, V., Roy, S., & Ghosh, D. (2019). CRISPR-Cas9 system: A new-fangled dawn in gene editing. Life sciences, 232, 116636. https://doi.org/10.1016/j.lfs.2019.116636
Hassan, A. Y., Lin, J. T., Ricker, N., & Anany, H. (2021). The Age of Phage: Friend or Foe in the New Dawn of Therapeutic and Biocontrol Applications?. Pharmaceuticals (Basel, Switzerland), 14(3), 199. https://doi.org/10.3390/ph14030199
Hirt, H., Greenwood-Quaintance, K. E., Karau, M. J., Till, L. M., Kashyap, P. C., Patel, R., & Dunny, G. M. (2018). Enterococcus faecalis Sex Pheromone cCF10 Enhances Conjugative Plasmid Transfer In Vivo. mBio, 9(1), e00037-18. https://doi.org/10.1128/mBio.00037-18
Hullahalli, K., Rodrigues, M., Nguyen, U. T., & Palmer, K. (2018). An Attenuated CRISPR-Cas System in Enterococcus faecalis Permits DNA Acquisition. mBio, 9(3), e00414-18. https://doi.org/10.1128/mBio.00414-18
Huo, W., Adams, H. M., Zhang, M. Q., & Palmer, K. L. (2015). Genome Modification in Enterococcus faecalis OG1RF Assessed by Bisulfite Sequencing and Single-Molecule Real-Time Sequencing. Journal of bacteriology, 197(11), 1939–1951. https://doi.org/10.1128/JB.00130-15
Jabbari Shiadeh, S. M., Pormohammad, A., Hashemi, A., & Lak, P. (2019). Global prevalence of antibiotic resistance in blood-isolated Enterococcus faecalis and Enterococcus faecium: a systematic review and meta-analysis. Infection and drug resistance, 12, 2713–2725. https://doi.org/10.2147/IDR.S206084
Jannati, E., Amirmozaffari, N., Saadatmand, S., & Arzanlou, M. (2020). Faecal carriage of high-level aminoglycoside-resistant and ampicillin-resistant Enterococcus species in healthy Iranian children. Journal of global antimicrobial resistance, 20, 135–144. https://doi.org/10.1016/j.jgar.2019.06.022
Kiga, K., Tan, X. E., Ibarra-Chávez, R., Watanabe, S., Aiba, Y., Sato'o, Y., Li, F. Y., Sasahara, T., Cui, B., Kawauchi, M., Boonsiri, T., Thitiananpakorn, K., Taki, Y., Azam, A. H., Suzuki, M., Penadés, J. R., & Cui, L. (2020). Development of CRISPR-Cas13a-based antimicrobials capable of sequence-specific killing of target bacteria. Nature communications, 11(1), 2934. https://doi.org/10.1038/s41467-020-16731-6
Kilbas, I., & Ciftci, I. H. (2018). Antimicrobial resistance of Enterococcus isolates in Turkey: A meta-analysis of current studies. Journal of global antimicrobial resistance, 12, 26–30. https://doi.org/10.1016/j.jgar.2017.08.012
Mackow, N. A., Shen, J., Adnan, M., Khan, A. S., Fries, B. C., & Diago-Navarro, E. (2019). CRISPR-Cas influences the acquisition of antibiotic resistance in Klebsiella pneumoniae. PloS one, 14(11), e0225131. https://doi.org/10.1371/journal.pone.0225131
Melese, A., Genet, C., & Andualem, T. (2020). Prevalence of Vancomycin resistant enterococci (VRE) in Ethiopia: a systematic review and meta-analysis. BMC infectious diseases, 20(1), 124. https://doi.org/10.1186/s12879-020-4833-2
Palmer, K. L., & Gilmore, M. S. (2010). Multidrug-resistant enterococci lack CRISPR-cas. mBio, 1(4), e00227-10. https://doi.org/10.1128/mBio.00227-10
Price, V. J., Huo, W., Sharifi, A., & Palmer, K. L. (2016). CRISPR-Cas and Restriction-Modification Act Additively against Conjugative Antibiotic Resistance Plasmid Transfer in Enterococcus faecalis. mSphere, 1(3), e00064-16. https://doi.org/10.1128/mSphere.00064-16
Price, V. J., McBride, S. W., Hullahalli, K., Chatterjee, A., Duerkop, B. A., & Palmer, K. L. (2019). Enterococcus faecalis CRISPR-Cas Is a Robust Barrier to Conjugative Antibiotic Resistance Dissemination in the Murine Intestine. mSphere, 4(4), e00464-19. https://doi.org/10.1128/mSphere.00464-19
Rodrigues, M., McBride, S. W., Hullahalli, K., Palmer, K. L., & Duerkop, B. A. (2019). Conjugative Delivery of CRISPR-Cas9 for the Selective Depletion of Antibiotic-Resistant Enterococci. Antimicrobial agents and chemotherapy, 63(11), e01454-19. https://doi.org/10.1128/AAC.01454-19
Sharifzadeh Peyvasti, V., Mohabati Mobarez, A., Shahcheraghi, F., Khoramabadi, N., Razaz Rahmati, N., & Hosseini Doust, R. (2020). High-level aminoglycoside resistance and distribution of aminoglycoside resistance genes among Enterococcus spp. clinical isolates in Tehran, Iran. Journal of global antimicrobial resistance, 20, 318–323. https://doi.org/10.1016/j.jgar.2019.08.008
Sterling, A. J., Snelling, W. J., Naughton, P. J., Ternan, N. G., & Dooley, J. (2020). Competent but complex communication: The phenomena of pheromone-responsive plasmids. PLoS pathogens, 16(4), e1008310. https://doi.org/10.1371/journal.ppat.1008310
Sully, E. K., & Geller, B. L. (2016). Antisense antimicrobial therapeutics. Current opinion in microbiology, 33, 47–55. https://doi.org/10.1016/j.mib.2016.05.017
Tagliaferri, T. L., Guimarães, N. R., Pereira, M., Vilela, L., Horz, H. P., Dos Santos, S. G., & Mendes, T. (2020). Exploring the Potential of CRISPR-Cas9 Under Challenging Conditions: Facing High-Copy Plasmids and Counteracting Beta-Lactam Resistance in Clinical Strains of Enterobacteriaceae. Frontiers in microbiology, 11, 578. https://doi.org/10.3389/fmicb.2020.00578
Tong, Z., Du, Y., Ling, J., Huang, L., & Ma, J. (2017). Relevance of the clustered regularly interspaced short palindromic repeats of Enterococcus faecalis strains isolated from retreatment root canals on periapical lesions, resistance to irrigants and biofilms. Experimental and therapeutic medicine, 14(6), 5491–5496. https://doi.org/10.3892/etm.2017.5205
Vogkou, C. T., Vlachogiannis, N. I., Palaiodimos, L., & Kousoulis, A. A. (2016). The causative agents in infective endocarditis: a systematic review comprising 33,214 cases. European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology, 35(8), 1227–1245. https://doi.org/10.1007/s10096-016-2660-6
Wada, Y., Harun, A. B., Yean, C. Y., & Zaidah, A. R. (2020). Vancomycin-Resistant Enterococci (VRE) in Nigeria: The First Systematic Review and Meta-Analysis. Antibiotics (Basel, Switzerland), 9(9), 565. https://doi.org/10.3390/antibiotics9090565
Wang, G., Song, G., & Xu, Y. (2020). Association of CRISPR/Cas System with the Drug Resistance in Klebsiella pneumoniae. Infection and drug resistance, 13, 1929–1935. https://doi.org/10.2147/IDR.S253380
Wojciechowska, M., Równicki, M., Mieczkowski, A., Miszkiewicz, J., & Trylska, J. (2020). Antibacterial Peptide Nucleic Acids-Facts and Perspectives. Molecules (Basel, Switzerland), 25(3), 559. https://doi.org/10.3390/molecules25030559
Wu, Z. Y., Huang, Y. T., Chao, W. C., Ho, S. P., Cheng, J. F., & Liu, P. Y. (2019). Reversal of carbapenem-resistance in Shewanella algae by CRISPR/Cas9 genome editing. Journal of advanced research, 18, 61–69. https://doi.org/10.1016/j.jare.2019.01.011
Yoong, P., Schuch, R., Nelson, D., & Fischetti, V. A. (2004). Identification of a broadly active phage lytic enzyme with lethal activity against antibiotic-resistant Enterococcus faecalis and Enterococcus faecium. Journal of bacteriology, 186(14), 4808–4812. https://doi.org/10.1128/JB.186.14.4808-4812.2004.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Elias El-Shaddai dos Santos Nery Nunes Ribeiro; Joel Antônio Cordeiro de Abreu; Fabiana Brandão
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.