Metales pesados y su relación con el estrés oxidativo en reptiles

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i3.26571

Palabras clave:

Acción antropogénica; Antioxidante; Contaminantes; Daños metabólicos; Reptilia.

Resumen

Varios metales pesados ​​y metaloides realizan funciones vitales en los organismos vivos. Por otra parte, una exposición excesiva puede provocar posibles efectos morfológicos y fisiológicos negativos en los reptiles. La acción antrópica puede interferir directamente en el desequilibrio fisiológico de estos animales, dado que los xenobióticos presentes en los residuos de las actividades humanas terminan generando especies reactivas de oxígeno en los organismos, esta condición se establece cuando la producción de radicales libres supera las barreras antioxidantes. Es posible realizar monitoreo ambiental para estudios ecotoxicológicos utilizando bioindicadores y biomarcadores moleculares, utilizando técnicas de muestreo no invasivas, sin dañar la vida silvestre. El objetivo de esta revisión bibliográfica fue investigar información sobre la influencia de los metales pesados ​​y su relación con el estrés oxidativo, acciones antrópicas, bioindicadores ambientales y su relación con el daño metabólico en reptiles. Para realizar esta revisión se utilizaron artículos en bases de datos científicas PubMed, portal de revistas CAPES, Google académico y SciELO. De esta investigación se anotó que el acción humana tiene un impacto nocivo tanto en los animales como el hombre, ya que varios metales y metaloides se diseminan a través de los residuos de las actividades industriales y domésticas, y cuando se desechan irresponsablemente en la biota marina o terrestre pueden causar bioacumulación y fenómenos de biomagnificación. Dicho esto, este escenario conduce a varios daños metabólicos, lo que resulta en daño celular y disfunción orgánica. El impacto que el uso abusivo de metales pesados ​​y contaminantes en general puede ocasionar en la remodelación de los ecosistemas, con efectos directos en la conservación de los reptiles.

Citas

Aebi, H. (1984). Catalase in vitro. Methods in enzymology, 105, 121–126.

Ahamed, M. & Siddiqui, M. K. (2007). Low level lead exposure and oxidative stress: current opinions. Clinica chimica acta; international journal of clinical chemistry, 383(1-2), 57–64.

Alcantara, V. (2012). Sociedade de consumo e impactos ambientais. Revista Sociedade de Consumo e Impacto Ambiental.

Araújo, A. P. C., Lima, V. S., Vieira, J. E. A., Mesak, C. & Malafaia, G. (2019). First report on the mutagenicity and cytotoxicity of Zno nanoparticles in reptiles. Chemosphere, 235, 556–564.

Arias, A. R. L., Buss, D. F., Alburquerque, C. de, Inácio, A. F., Freire, M. M., Egler, M., Mugnai, R. & Baptista, D. F. (2007). Utilização de bioindicadores na avaliação de impacto e no monitoramento da contaminação de rios e córregos por agrotóxicos. Ciência & Saúde Coletiva, 12(1), 61–72.

Bagliano, R. V. (2012). Principais organismos utilizados como bioindicadores relatados com uso de avaliadores de danos ambientais. Revista Meio Ambiente E Sustentabilidade, 2(1), 24 - 40.

Barreiros, A. L. B. S., David, J. M. & David, J. P. (2006). Oxidative stress: Relations between the formation of reactive species and the organism’s defense. Quimica Nova, 29(1), 113–123.

Beau, F., Bustamante, P., Michaud, B. & Brischoux, F. (2019). Environmental causes and reproductive correlates of mercury contamination in European pond turtles (Emys orbicularis). Environmental Research, 172, 338-344.

Buege, J. A. & Aust, S. D. (1978). Microsomal lipid peroxidation. Methods Enzymol, 52, 302-310.

Chandran, R., Sivakumar, A. A., Mohandass, S. & Aruchami, M. (2005). Effect of cadmium and zinc on antioxidant enzyme activity in the gastropod, Achatina fulica. Comparative Biochemistry and physiology Part C, 140, 422-426.

Cogo, A. J. D., Siqueira, A. F., Ramos, A. C., Cruz, Z. M. A. & Silva A. G. (2009). Utilização de enzimas do estresse oxidativo como biomarcadoras de impactos ambientais. Natureza on line, 7(1), 37-42.

CONAMA - Conselho Nacional do Meio Ambiente. (1986). Resolução CONAMA nº 1, de 23 de janeiro de 1986. Publicada no DOU, de 17 de fevereiro de 1986, Seção 1, 2548-2549.

Cooper, H. M. (1982) Scientific guidelines for conducting integrative research reviews. Rev Educ Res, 52(2), 291-302.

Cortés-Gómez, A. A., Morcillo, P., Guardiola, F. A., Espinosa, C., Esteban, M. A., Cuesta, A., Girondot M. & Romero, D. (2018). Molecular oxidative stress markers in olive ridley turtles (Lepidochelys olivacea) and their relation to metal concentrations in wild populations. Environmental Pollution, 233, 156–167.

Costantini, D. & Verhulst, S. (2009). Does high antioxidant capacity indicate low oxidative stress? Functional Ecology, 23(3), 506-509.

Da Silva, C. C., Klein, R. D., Barcarolli, I. F. & Bianchini, A. (2016). Metal contamination as a possible etiology of fibropapillomatosis in juvenile female green sea turtles Chelonia mydas from the southern Atlantic Ocean. Aquatic toxicology (Amsterdam, Netherlands), 170, 42–51.

Da Silva, C. C., Varela, A. S., Jr, Barcarolli, I. F. & Bianchini, A. (2014). Concentrations and distributions of metals in tissues of stranded green sea turtles (Chelonia mydas) from the southern Atlantic coast of Brazil. The Science of the total environment, 466-467, 109–118.

Dzul-Caamal, R., Hernández-López, A., Gonzalez-Jáuregui, M., Padilla, S. E., Girón-Pérez, M. I. & Vega-López, A. (2016). Usefulness of oxidative stress biomarkers evaluated in the snout scraping, serum and Peripheral Blood Cells of Crocodylus moreletii from Southeast Campeche for assessment of the toxic impact of PAHs, metals and total phenols. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 200, 35–46.

Esposito, M., De Roma, A., Sansone, D., Capozzo, D., Iaccarino, D., di Nocera, F. & Gallo, P. (2020). Non-essential toxic element (Cd, As, Hg and Pb) levels in muscle, liver and kidney of loggerhead sea turtles (Caretta caretta) stranded along the southwestern coasts of Tyrrhenian sea. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 231, 108725.

Favorito, R., Monaco, A., Grimaldi, M. C. & Ferrandino, I. (2017). Effects of cadmium on the glial architecture in lizard brain. European Journal of Histochemistry, 61(1).

Flohé, L. & Günzler, W. A. (1984). Assays of glutathione peroxidase. Methods in enzymology, 105, 114–121.

French, S. S., Neuman-Lee, L. A., Terletzky, P. A., Kiriazis, N. M., Taylor, E. N. & DeNardo, D. F. (2017). Too much of a good thing? Human disturbance linked to ecotourism has a “dose-dependent” impact on innate immunity and oxidative stress in marine iguanas, Amblyrhynchus cristatus. Biological Conservation, 210, 37–47.

Frossard, A., Carneiro, M. T. W. D., Silva, E. L. de F. da, Camargo Filho, C. B. & Rossi Júnior, J. L. (2017). Concentração de elementos traços em serpentes do litoral e da região serrana do Espírito Santo. Pesquisa Veterinária Brasileira, 37(10), 1146–1152.

Frossard, A., Coppo, G. C., Lourenço, A. T., Heringer, O. A. & Chippari-Gomes, A. R. (2021). Metal bioaccumulation and its genotoxic effects on eggs and hatchlings of giant Amazon river turtle (Podocnemis expansa). Ecotoxicology, 30(4), 643–657.

Frossard, A., Leite, F. L. G., Silva, E. L. F., Carneiro, M. T. W. D., Júnior, J. L. R., Gomes, L. C. & Endringer, D. C. (2019). The snake Bothrops jararaca (Squamata: Viperidae) is a suitable bioindicator of environmental exposure to cadmium: An experimental study. Ecological Indicators, 104, 166–171.

Ganzala, G. G. (2018). A industrialização, impactos ambientais e a necessidade de desenvolvimento de políticas ambientais sustentáveis no século XXI. https://repositorio.uninter.com/handle/1/295

Goulart, M. & Callisto, M. (2003). Bioindicadores de qualidade de água como ferramenta em estudos de impacto ambiental. Revista da FAPAM, ano 2, 1, 156-164.

Halliwell, B. & Gutteridge, J. M. (2015). Free radicals in biology and medicine. Oxford university press, USA.

Han, X., Hao, X., Wang, Y., Wang, X., Teng, L., Liu, Z., Zhang, F. & Zhang, Q. (2020). Experimental warming induces oxidative stress and immunosuppression in a viviparous lizard, Eremias multiocellata. Journal of Thermal Biology, 90, 102595.

Hernández-Fernández, J., López-Barrera, E. A., Mariño-Ramírez, L., Rodríguez-Becerra, P. & Pinzón-Velasco, A. (2020). Oxidative Stress Biomarkers in Erythrocytes of Captive Pre-Juvenile Loggerhead Turtles Following Acute Exposure to Methylmercury. Applied Sciences, 10(10), 3602.

Héritier, L., Duval, D., Galinier, R., Meistertzheim, A.-L. & Verneau, O. (2017). Oxidative stress induced by glyphosate-based herbicide on freshwater turtles. Environmental Toxicology and Chemistry, 36(12), 3343–3350.

Hopkins, B. C., Hepner, M. J., & Hopkins, W. A. (2013). Non-destructive techniques for biomonitoring of spatial, temporal, and demographic patterns of mercury bioaccumulation and maternal transfer in turtles. Environmental Pollution, 177, 164–170.

Huo, J., Dong, A., Niu, X., Dong, A., Lee, S., Ma, C. & Wang, L. (2018). Effects of cadmium on oxidative stress activities in plasma of freshwater turtle Chinemys reevesii. Environmental Science and Pollution Research, 25(8), 8027–8034.

Instituto Chico Mendes de Conservação da Biodiversidade. (2018). Livro Vermelho da Fauna Brasileira Ameaçada de Extinção: Volume IV - Répteis. Instituto Chico Mendes de Conservação da Biodiversidade. (Org.). Livro Vermelho da Fauna Brasileira Ameaçada de Extinção. Brasília: ICMBio. 252.

Levine, R. L., Williams, J. A., Stadtman, E. P. & Shacter, E. (1994). Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol, 233, 346–357.

Machado, L. P., Kohayagawa, A., Saito, M. E., Silveira, V. F. da & Yonezawa, L. A. (2009). Lesão oxidativa eritrocitária e mecanismos antioxidantes de interesse em Medicina Veterinária. Revista de Ciências Agroveterinárias, 8(1), 84-94.

Márquez-Ferrando, R., Santos, X., Pleguezuelos, J. M. & Ontiveros, D. (2009). Bioaccumulation of heavy metals in the lizard Psammodromus algirus after a tailing-dam collapse in Aznalcóllar (Southwest Spain). Archives of environmental contamination and toxicology, 56(2), 276–285.

Mendonça, M. F. & Ferreira, M. L. (2019). O Uso do Solo Próximo à Reservatórios de Abastecimento Hídrico e suas Implicações com a Prestação por Serviços Ambientais: Uma Abordagem Baseada em Valoração Monetária. Zabotto, A. R. Estudos Sobre Impactos Ambientais: Uma Abordagem Contemporânea. FEPAF. Botucatu, Brasil, 25-57.

Misra, H. P. & Fridovich, I. (1971). The generation of superoixide radical during the autoxidation of ferredoxins. The Journal of biological chemistry, 246(22), 6886–6890.

Moll, D. & Moll, E. O. (2004). The ecology,exploitation and conservation of river turtles. Oxford University Press, 393.

Namroodil, S., Zaccaroni, A., Rezaei, H. & Hosseini, S. M. (2017). European pond turtle (Emys orbicularis persica) as a biomarker of environmental pollution in Golestan and Mazandaran provinces, Iran. Veterinary research forum : an international quarterly journal, 8(4), 333–339.

Nisa, Z., Sultana, S., Sultana, T., Al-Ghanim, K. A., Al-Ghanem, M. K., Al-Misned, F. & Mahboob, S. (2019). Environmental Exposure to Metals and Bioaccumulation in the Liver of Three Freshwater Species of Turtles from Two Different Rivers. Polish Journal of Environmental Studies, 28(5), 3299-3306.

Odetti, L. M., López González, E. C., Romito, M. L., Simoniello, M. F. & Poletta, G. L. (2020). Genotoxicity and oxidative stress in Caiman latirostris hatchlings exposed to pesticide formulations and their mixtures during incubation period. Ecotoxicology and Environmental Safety, 193, 110312.

Ortiz-Santaliestra, M. E., Rodríguez, A., Pareja-Carrera, J., Mateo, R. & Martinez-Haro, M. (2019). Tools for non-invasive sampling of metal accumulation and its effects in Mediterranean pond turtle populations inhabiting mining areas. Chemosphere, 231, 194-206.

Pastor, N., Weinstein, H., Jamison, E. & Brenowitz, M. (2000). A detailed interpretation of OH radical footprints in a TBP-DNA complex reveals the role of dynamics in the mechanism of sequence-specific binding. Journal of Molecular Biology, 304(1), 55–68.

Pereira, A. S., Parreira, F. J., Shitsuka, D. M., & Shitsuka, R. (2018). Metodologia da pesquisa científica. UFSM. https://repositorio.ufsm.br /bitstream/handle/1/15 824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Prestes, R. M. & Vincenci, K. L. (2019). Bioindicadores como avaliação de impacto ambiental. Brazilian Journal of Animal and Environmental Research, 2(4), 1473-1493.

Quintela, F. M., Lima, G. P., Silveira, M. L., Costa, P., Bianchini, A., Loebmann, D. & Martins, S. E. (2019). High arsenic and low lead concentrations in fish and reptiles from Taim wetlands, a Ramsar site in southern Brazil. Science of The Total Environment, 660, 1004-1014.

Quintela, F. M., Pino, S. R., Silva, F. C., Loebmann, D., Costa, P. G., Bianchini, A. & Martins, S. E. (2020). Arsenic, lead and cadmium concentrations in caudal crests of the yacare caiman (Caiman yacare) from Brazilian Pantanal. The Science of the total environment, 707, 135479.

Rashed, M. (2001). Monitoring of environmental heavy metals in fish from Nasser Lake. Environment International, 27(1), 27–33.

Reich, K. J., Bjorndal, K. A. & Martínez Del Rio, C. (2008). Effects of growth and tissue type on the kinetics of 13C and 15N incorporation in a rapidly growing ectotherm. Oecologia, 155(4), 651–663.

Rodriguez, C., Bezerra, M. F., Rezende, C. E., Bastos, W. R. & Lacerda, L. D. (2019). Mercury and methylmercury in carapace of the marine turtle Caretta caretta, in northeastern Brazil and its potential for environmental monitoring. Anais da Academia Brasileira de Ciências, 91(2).

Salvarani, P. I., Vieira, L. R., Ku-Peralta, W., Morgado, F. & Osten, J. R. (2018). Oxidative stress biomarkers and organochlorine pesticides in nesting female hawksbill turtles Eretmochelys imbricata from Mexican coast (Punta Xen, Mexico). Environmental Science and Pollution Research, 25(24), 23809–23816.

Schaumburg, L. G., Poletta, G. L., Siroski, P. A. & Mudry, M. D. (2012). Baseline values of micronuclei and comet assay in the lizard Tupinambis merianae (Teiidae, Squamata). Ecotoxicology and Environmental Safety, 84, 99–103.

Schneider, L., Belger, L., Burger, J., Vogt, R. C., Jeitner, C. & Peleja, J. R. P. (2010). Assessment of non-invasive techniques for monitoring mercury concentrations in species of Amazon turtles. Toxicological & Environmental Chemistry, 93:2, 238-250.

Schneider, L., Eggins, S., Maher, W., Vogt, R. C., Krikowa, F., Kinsley, L., Eggins, S. M. & Da Silveira, R. (2015). An evaluation of the use of reptile dermal scutes as a non-invasive method to monitor mercury concentrations in the environment. Chemosphere, 119, 163–170.

Silva, J. M., Navoni, J. A. & Freire, E. M. X. (2020). Lizards as model organisms to evaluate environmental contamination and biomonitoring. Environ Monit Assess, 192, 454.

Simonyan, A., Hovhannisyan, G., Sargsyan, A., Arakelyan, M., Minasyan, S. & Aroutiounian, R. (2018). DNA damage and micronuclei in parthenogenetic and bisexual Darevskia rock lizards from the areas with different levels of soil pollution. Ecotoxicology and Environmental Safety, 154, 13–18.

Slimani, T., El Hassani, M. S., El Mouden, E. H., Bonnet, M., Bustamante, P., Brischoux, F., Brault-Favrou, M. & Bonnet, X. (2017). Large-scale geographic patterns of mercury contamination in Morocco revealed by freshwater turtles. Environmental Science and Pollution Research, 25(3), 2350–2360.

Souza, N. L. N., Carneiro, M. T. W. D., Pimentel, E. F., Frossard, A., Freire, J. B., Endringer, D. C. & Ferreira Júnior, P. D. (2018). Trace elements influence the hatching success and emergence of Caretta caretta and Chelonia mydas. Journal of Trace Elements in Medicine and Biology, 50, 117–122.

Stark, A. A. P., Bonfada, C. O., Paula, L. S. de, Teles, M. A., Varela Junior, A. S., Corcini, C. D. & França, R. T. (2021). Lead intoxication: environmental conflicts in South America and perspective under the conservation of wild birds. Research, Society and Development, 10(2), e42510212701.

Trasviña-Arenas, C. H., Garcia-Triana, A., Peregrino-Uriarte, A. B. & Yepiz-Plascencia, G. (2013). White shrimp Litopenaeus vannamei catalase: Gene structure, expression and activity under hypoxia and reoxygenation. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 164(1), 44–52.

Varol, M. (2011). Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. Journal of Hazardous Materials, 195, 355–364.

Wise, S. S., Wise, C., Xie, H., Guillette, L. J., Zhu, C., Wise, J. P. & Wise, J. P. (2016). Hexavalent chromium is cytotoxic and genotoxic to American alligator cells. Aquatic Toxicology, 171, 30–36.

Zocche, J. J., Damiani, A. P., Hainzenreder, G., Mendonça, R. Á., Peres, P. B., Santos, C. E. I. dos, Debastiani, R., Diaz, J. F. & Andrade, V. M. de. (2013). Assessment of heavy metal content and DNA damage in Hypsiboas faber (anuran amphibian) in coal open-casting mine. Environmental Toxicology and Pharmacology, 36(1), 194–201.

Publicado

21/02/2022

Cómo citar

STARK, A. A. P. .; BONFADA, C. O. .; ZANI, G. da S. .; PAULA, L. S. de; TELES, M. A. .; VARELA JUNIOR, A. S. .; CORCINI, C. D. .; FRANÇA, R. T. . Metales pesados y su relación con el estrés oxidativo en reptiles. Research, Society and Development, [S. l.], v. 11, n. 3, p. e27511326571, 2022. DOI: 10.33448/rsd-v11i3.26571. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/26571. Acesso em: 17 jul. 2024.

Número

Sección

Revisiones