Propiedades inhibidoras de α-glucosidasa de extractos de hojas y cortezas de Curatella americana L.
DOI:
https://doi.org/10.33448/rsd-v11i4.27052Palabras clave:
Taninos; Hiperglucemia posprandial; Actividad antioxidante; Diabetes.Resumen
En este artículo investigamos la actividad inhibidora de extractos metanólicos de corteza y hojas de Curatella americana L. contra la α-glucosidasa. Además, la actividad antioxidante se evaluó mediante ensayos DPPH y ABTS, y la interacción del compuesto identificado de los extractos y la α-glucosidasa se probó mediante acoplamiento molecular. Los resultados muestran que C. americana tiene una fuerte actividad inhibitoria contra la α-glucosidasa alcanzando un valor de IC 50 de 7.29 µg/ml y 7.26 µg/ml para el extracto de corteza y hojas, respectivamente. La cinética enzimática revela un mecanismo competitivo mixto para el extracto de hojas y un tipo de inhibición no competitivo para el extracto de corteza. Los resultados de la actividad antioxidante mostraron que ambos extractos tienen una gran capacidad antioxidante, teniendo el extracto de hojas un mejor desempeño. Los compuestos identificados de los extractos tienen una alta afinidad de unión a la enzima. Por tanto, el estudio demostró que los extractos de C. americana tienen un gran potencial para el tratamiento de la diabetes, sirviendo posiblemente como una opción terapéutica para tratar la hiperglucemia posprandial y prevenir patologías a largo plazo asociadas a la diabetes.
Citas
Ahmed, O. M., Hassan, M. A., Abdel-Twab, S. M., & Abdel Azeem, M. N. (2017). Navel orange peel hydroethanolic extract, naringin and naringenin have anti-diabetic potentials in type 2 diabetic rats. Biomedicine and Pharmacotherapy, 94, 197–205. https://doi.org/10.1016/j.biopha.2017.07.094
Barrett, A. H., Farhadi, N. F., & Smith, T. J. (2018). Slowing starch digestion and inhibiting digestive enzyme activity using plant flavanols/tannins— A review of efficacy and mechanisms. LWT, 87, 394–399. https://doi.org/10.1016/j.lwt.2017.09.002
Beidokhti, M. N., & Jäger, A. K. (2017). Review of antidiabetic fruits, vegetables, beverages, oils and spices commonly consumed in the diet. In Journal of Ethnopharmacology (Vol. 201, pp. 26–41). Elsevier Ireland Ltd. https://doi.org/10.1016/j.jep.2017.02.031
Cecílio, A. B., Faria, D. B. de, Oliveira, P. D. C., Caldas, S., Oliveira, D. A. de, Sobral, M. E. G., Duarte, M. G. R., Moreira, C. P. D. S., Silva, C. G., & Almeida, V. L. de. (2012). Screening of Brazilian medicinal plants for antiviral activity against rotavirus. Journal of Ethnopharmacology, 141(3), 975–981. https://doi.org/10.1016/j.jep.2012.03.031
Costa, O. J. da, Barbosa, R. dos S., Soares, I. M., Souza E. E. de, Gellen, L. F. A., Lemos, J. P. P. P., Aguiar, R. W. S., Montel, A. L. B., & Ascencio, S. D. (2020). Inhibitory effects of Anadenanthera colubrina (Vell.) Brenan stem bark extract on -glucosidase activity and oxidative stress. Journal of Medicinal Plants Research, 14(11), 583–592. https://doi.org/10.5897/JMPR2020.7025
Deseo, M. A., Elkins, A., Rochfort, S., & Kitchen, B. (2020). Antioxidant activity and polyphenol composition of sugarcane molasses extract. Food Chemistry, 314. https://doi.org/10.1016/j.foodchem.2020.126180
Fu, M., Shen, W., Gao, W., Namujia, L., Yang, X., Cao, J., & Sun, L. (2021). Essential moieties of myricetins, quercetins and catechins for binding and inhibitory activity against α-Glucosidase. Bioorganic Chemistry, 115. https://doi.org/10.1016/j.bioorg.2021.105235
Ghani, U. (2015). Re-exploring promising α-glucosidase inhibitors for potential development into oral anti-diabetic drugs: Finding needle in the haystack. In European Journal of Medicinal Chemistry (Vol. 103, pp. 133–162). Elsevier Masson SAS. https://doi.org/10.1016/j.ejmech.2015.08.043
Habib, H. M., Platat, C., Meudec, E., Cheynier, V., & Ibrahim, W. H. (2014). Polyphenolic compounds in date fruit seed (Phoenix dactylifera): Characterisation and quantification by using UPLC-DAD-ESI-MS. Journal of the Science of Food and Agriculture, 94(6), 1084–1089. https://doi.org/10.1002/jsfa.6387
Hamed, Y. S., Abdin, M., Rayan, A. M., Saleem Akhtar, H. M., & Zeng, X. (2021). Synergistic inhibition of isolated flavonoids from Moringa oleifera leaf on α-glucosidase activity. LWT, 141. https://doi.org/10.1016/j.lwt.2021.111081
Henriques, S. V. C., & Almeida, S. S. M. da S. de. (2015). Identificação do caráter medicinal da espécie Curatella americana por meio das folhas. Estação Científica (UNIFAP), 3(2), 89–97.
Junejo, J. A., Rudrapal, M., Nainwal, L. M., & Zaman, K. (2017). Antidiabetic activity of hydro-alcoholic stem bark extract of Callicarpa arborea Roxb. with antioxidant potential in diabetic rats. Biomedicine and Pharmacotherapy, 95, 84–94. https://doi.org/10.1016/j.biopha.2017.08.032
Kazeem, M. I., Akanji, M. A., Hafizur, R. M., & Choudhary, M. I. (2012). Antiglycation, antioxidant and toxicological potential of polyphenol extracts of alligator pepper, ginger and nutmeg from Nigeria. Asian Pacific Journal of Tropical Biomedicine, 2(9), 727–732. https://doi.org/10.1016/S2221-1691(12)60218-4
Kumari, M., & Jain, S. (2012). Tannin: An Antinutrient with Positive Effect to Manage Diabetes. www.isca.in
Ky, I., & Teissedre, P. L. (2015). Characterisation of Mediterranean grape pomace seed and skin extracts: Polyphenolic content and antioxidant activity. Molecules, 20(2), 2190–2207. https://doi.org/10.3390/molecules20022190
Laddha, A. P., & Kulkarni, Y. A. (2019). Tannins and vascular complications of Diabetes: An update. In Phytomedicine (Vol. 56, pp. 229–245). Elsevier GmbH. https://doi.org/10.1016/j.phymed.2018.10.026
Lee, D. Y., Kim, H. W., Yang, H., & Sung, S. H. (2017). Hydrolyzable tannins from the fruits of Terminalia chebula Retz and their α-glucosidase inhibitory activities. Phytochemistry, 137, 109–116. https://doi.org/10.1016/j.phytochem.2017.02.006
Lopes, R. H. O., Macorini, L. F. B., Antunes, K. Á., Espindola, P. P. D. T., Alfredo, T. M., Rocha, P. D. S. da, Pereira, Z. V., Santos, E. L. dos, & Souza, K. D. P. (2016). Antioxidant and Hypolipidemic Activity of the Hydroethanolic Extract of Curatella americana L. Leaves. Oxidative Medicine and Cellular Longevity, 2016. https://doi.org/10.1155/2016/9681425
Ma, W., Waffo-Téguo, P., Alessandra Paissoni, M., Jourdes, M., & Teissedre, P. L. (2018). New insight into the unresolved HPLC broad peak of Cabernet Sauvignon grape seed polymeric tannins by combining CPC and Q-ToF approaches. Food Chemistry, 249, 168–175. https://doi.org/10.1016/j.foodchem.2018.01.005
Oboh, G., Ogunsuyi, O. B., Ogunbadejo, M. D., & Adefegha, S. A. (2016). Influence of gallic acid on α-amylase and α-glucosidase inhibitory properties of acarbose. Journal of Food and Drug Analysis, 24(3), 627–634. https://doi.org/10.1016/j.jfda.2016.03.003
Oestreich Filho, E. (2014). Fitossociologia, diversidade e similaridade entre fragmentos de cerrado stricto sensu sobre neossolos quartzarênicos órticos, nos municípios de Cuiabá e Chapada dos Guimarães, estado de Mato Grosso, Brasil.
Ou-Yang, C., Chai, W., Xu, X., Song, S., Wei, Q., Huang, Q., & Zou, Z. (2020). Inhibitory potential of proanthocyanidins from the fruit pulp of Clausena lansium (Lour.) Skeels against α-glucosidase and non-enzymatic glycation: Activity and mechanism. Process Biochemistry, 91, 364–373. https://doi.org/10.1016/j.procbio.2020.01.006
Park, S. R., Kim, J. H., Jang, H. D., Yang, S. Y., & Kim, Y. H. (2018). Inhibitory activity of minor phlorotannins from Ecklonia cava on α-glucosidase. Food Chemistry, 257, 128–134. https://doi.org/10.1016/j.foodchem.2018.03.013
Peixoto Sobrinho, T. J. da S., Silva, C. H. T. P. da, Nascimento, J. E. do, Monteiro, J. M., Albuquerque, U. P. de, & Amorim, E. L. C. de. (2008). Validação de metodologia espectrofotométrica para quantificação dos flavonóides de Bauhinia cheilantha (Bongard) Steudel. Revista Brasileira de Ciências Farmacêuticas, 44, 683–689.
Proença, C., Freitas, M., Ribeiro, D., Oliveira, E. F. T., Sousa, J. L. C., Tomé, S. M., Ramos, M. J., Silva, A. M. S., Fernandes, P. A., & Fernandes, E. (2017). α-Glucosidase inhibition by flavonoids: an in vitro and in silico structure–activity relationship study. Journal of Enzyme Inhibition and Medicinal Chemistry, 32(1), 1216–1228. https://doi.org/10.1080/14756366.2017.1368503
Ramkissoon, J. S., Mahomoodally, M. F., Subratty, A. H., & Ahmed, N. (2016). Inhibition of glucose- and fructose-mediated protein glycation by infusions and ethanolic extracts of ten culinary herbs and spices. Asian Pacific Journal of Tropical Biomedicine, 6(6), 492–500. https://doi.org/10.1016/j.apjtb.2016.01.016
Ramu, R., Shirahatti, P. S., Zameer, F., Ranganatha, L. v., & Nagendra Prasad, M. N. (2014). Inhibitory effect of banana (Musa sp. var. Nanjangud rasa bale) flower extract and its constituents Umbelliferone and Lupeol on α-glucosidase, aldose reductase and glycation at multiple stages. South African Journal of Botany, 95, 54–63. https://doi.org/10.1016/j.sajb.2014.08.001
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3
Serrano, J., Puupponen-Pimiä, R., Dauer, A., Aura, A. M., & Saura-Calixto, F. (2009). Tannins: Current knowledge of food sources, intake, bioavailability and biological effects. In Molecular Nutrition and Food Research. 53(2), S310–S329. Wiley-VCH Verlag. https://doi.org/10.1002/mnfr.200900039
Soares, I. M., Bastos, E. G. P., Sobrinho, T. J. S. P., Alvim, T. C., Silveira, M. A., Aguiar, R. W. S., & Ascêncio, S. D. (2014). Conteúdo fenólico e atividade antioxidante de diferentes cultivares de ipomoea batatas (l.) lam. obtidas por melhoramento genético para produção industrial de etanol. Revista de Ciências Farmacêuticas Básica e Aplicada, 35(3).
Sobrinho, T. J. S. P., Castro, V. T. N. A., Saraiva, A. M., Almeida, D. M., Tavares, E. A., & Amorim, E. L. C. (2011). Phenolic content and antioxidant capacity of four cnidoscolus species (euphorbiaceae) used as ethnopharmacologicals in caatinga, brazil. African Journal of Pharmacy and Pharmacology, 5(20), 2310–2316. https://doi.org/10.5897/AJPP11.608
Teles Fujishima, M., Silva, N., Ramos, R., Batista Ferreira, E., Santos, K., Silva, C., Silva, J., Campos Rosa, J., & Santos, C. (2018). An Antioxidant Potential, Quantum-Chemical and Molecular Docking Study of the Major Chemical Constituents Present in the Leaves of Curatella americana Linn. Pharmaceuticals, 11(3), 72. https://doi.org/10.3390/ph11030072
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Robson dos Santos Barbosa; Ilsamar Mendes Soares; Gabriela Eustáquio Lacerda; Francisco Hiroshi Matumoto; Tatiani Regina Rech; Aline Soares de Souza; Tarso da Costa Alvim; Raimundo Wagner de Souza Aguiar; Sergio Donizeti Ascencio
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.