Parámetros de calidad física y química del eje central, mesocarpio y semilla de jack sometidos a diferentes processos de secado

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i4.27328

Palabras clave:

Horno de microondas; Reutilización de residuos; Harina; Sustentabilidad.

Resumen

El proceso de secado tiene como objetivo reducir el contenido de agua, contribuyendo a la conservación, almacenamiento y prolongando la vida útil de los alimentos. Los diferentes métodos de secado influyen en el rendimiento y la calidad del producto. Así, el objetivo fue observar la influencia del secado en horno y microondas sobre las propiedades físicas y químicas de los residuos de la yaca. Las materias primas se reutilizaron de las yacas compradas en el sitio de Bujari, Cuité, PB. El eje central, el mesocarpio y la semilla se secaron a 60 ° C durante 300, 360 y 300 min, respectivamente. La rampa de calentamiento en un horno microondas fue de 3 ciclos de 5 min, 100% de potencia y 40 g de muestra. Los dos métodos de secado provocaron la concentración del contenido de residuos minerales, sólidos solubles totales y proteínas. Sin embargo, hubo una reducción en el contenido de agua, la actividad del agua y el pH, aumentando la estabilidad de las harinas y, en consecuencia, la vida útil. Al secar en microondas, la concentración de proteína fue 2.14, 5.33 y 1.45 veces para el eje central, mesocarpio y semilla, respectivamente, en relación a los residuos in natura. Las harinas elaboradas pueden considerarse fuentes de diferentes minerales. El secado en un horno de microondas se consideró más eficaz para reducir el contenido de agua, el tiempo de secado y la calidad del producto deshidratado. El uso de residuos de yaca y la transformación en harinas de valor agregado es importante para la sostenibilidad y el medio ambiente, ya que reduce las pérdidas, el desperdicio y el impacto ambiental de alimentos.

Citas

Ahrné, L. M., Pereira, N. R., Staack, N., & Floberg, P. (2007). Microwave convective drying of plant foods at constant and variable microwave power. Drying Technology, 25(7-8), 1149-1153.

Balamaze, J., Muyonga, J. H., & Byaruhanga, Y. B. (2019). Physico-chemical characteristics of selected jackfruit (Artocarpus heterophyllus Lam.) varieties. Journal of Food Research, 8(4), 11-22.

Beckles, D. M. (2012). Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit. Postharvest Biology and Technology, 63(1), 129-140.

Belke, M., SOARES, A., Soares, M. A., & Steffens, J. (2017). Avaliação de características de pêssegos (Chimarrita e Eagil) desidratados por meio de diferentes processos. Revista Brasileira de Produtos Agroindustriais, 19(2), 207-215.

Botrel, N., Freitas, S., Fonseca, M. J. D. O., Melo, R. A. D. C., & Madeira, N. (2020). Valor nutricional de hortaliças folhosas não convencionais cultivadas no Bioma Cerrado. Brazilian Journal of Food Technology, 23.

Cecchi, H. M. (2003). Fundamentos teóricos e práticos em análise de alimentos. Editora da UNICAMP.

Chemat, F., & Cravotto, G. (Eds.). (2012). Microwave-assisted extraction for bioactive compounds: theory and practice (Vol. 4). Springer Science & Business Media.

Contreras, C., Martín-Esparza, M. E., Chiralt, A., & Martínez-Navarrete, N. (2008). Influence of microwave application on convective drying: Effects on drying kinetics, and optical and mechanical properties of apple and strawberry. Journal of Food Engineering, 88(1), 55-64.

da Franca, L. G., de Holanda, N. V., Aguiar, R. A. C., Reges, B. M., da Costa, F. B., de Souza, P. A., ... & Moura, C. F. H. (2020). Elaboração e caracterização de farinhas de banana verde. Research, Society and Development, 9(7), e271973798-e271973798.

de Farias Leite, D. D., de Melo Queiroz, A. J., de Figueirêdo, R. M. F., Campos, A. R. N., da Costa Santos, D., & de Lima, T. L. B. (2020). Germination Impact in the Nutrition and Technological Properties of Jackfruit Seeds. Journal of Agricultural Studies, 8(1), 79-100.

de Sousa, A. P. M., Campos, A. R. N., de Macedo, A. D. B., Dantas, D. L., de Oliveira Apolinário, M., & de Santana, R. A. C. (2020). Avaliação da qualidade de farináceos de casca de jaca. Brazilian Journal of Animal and Environmental Research, 3(3), 1786-1796.

de Sousa, A. P. M., Campos, A. R. N., Gomes, J. P., Costa, J. D., de Macedo, A. D. B., & de Santana, R. A. C. (2021). Cinética de secagem de resíduos de jaca (Artocarpus heterophyllus Lam.). Research, Society and Development, 10(2), e31510212610-e31510212610.

de Sousa, H. C., da Silva, N. J. P., Pereira, E. M., da Silva Filho, C. R. M., & de Macêdo, A. L. B. (2016). Qualidade físico-química e toxicológica de farinha obtida do eixo central de jaca. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 11(4), 91-98.

Elias, N. D. F., Berbert, P. A., Molina, M. A. B. D., Viana, A. P., Dionello, R. G., & Queiroz, V. A. V. (2008). Nutritional and sensory evaluation of osmo-convective dried Fuyu persimmons. Food Science and Technology, 28(2), 322-328

Fellows, P. J. (2018). Tecnologia do Processamento de Alimentos-: Princípios e Prática. Artmed Editora.

Feng, H., Yin, Y., & Tang, J. (2012). Microwave drying of food and agricultural materials: basics and heat and mass transfer modeling. Food Engineering Reviews, 4(2), 89-106.

Ferreira, A. B., & Lanfer-Marquez, U. M. (2007). Legislação brasileira referente à rotulagem nutricional de alimentos. Revista de Nutrição, 20, 83-93.

Forsythe, S. J. (2013). Microbiologia da segurança dos alimentos. Artmed Editora.

Goswami, C., & Chacrabati, R. (2016). Jackfruit (Artocarpus heterophylus). In Nutritional composition of fruit cultivars (pp. 317-335). Academic Press.

Instituto Adolfo Lutz (São Paulo). Métodos físico-químicos para análise de alimentos. 4.ed. São Paulo: Instituto Adolfo Lutz, 2008. 1020p. http://www.ial.sp.gov.br/resources/ editorinplace/ial/2016_3_19/analisedealimentosial_2008.pdf. 06 Set. 2018

Jafari, S. M., Ghalenoei, M. G., & Dehnad, D. (2017). Influence of spray drying on water solubility index, apparent density, and anthocyanin content of pomegranate juice powder. Powder technology, 311, 59-65.

Jangam, S. V. (2011). An overview of recent developments and some R&D challenges related to drying of foods. Drying Technology, 29(12), 1343-1357.

Jiang, Z., Shi, R., Chen, H., & Wang, Y. (2019). Ultrasonic microwave-assisted extraction coupled with macroporous resin chromatography for the purification of antioxidant phenolics from waste jackfruit (Artocarpus heterophyllus Lam.) peels. Journal of Food Science and Technology, 56(8), 3877-3886.

Joint, W. H. O. (2002). Diet, nutrition and the prevention of chronic diseases. Report of a joint WHO/FAO expert consultation.

Joye, I. (2019). Protein digestibility of cereal products. Foods, 8(6), 199.

Kumar, C., & Karim, M. A. (2019). Microwave-convective drying of food materials: A critical review. Critical reviews in food science and nutrition, 59(3), 379-394.

Kumar, Y., Singh, L., Sharanagat, V. S., Mani, S., Kumar, S., & Kumar, A. (2021). Quality attributes of convective hot air dried spine gourd (Momordica dioica Roxb. Ex Willd) slices. Food Chemistry, 347, 129041.

Makki, H. M. M., Alemam, M. M. A., & Ali, D. O. M. (2019). Effects of natural and artificial drying methods on the nutritional value and functional properties of vegetables grown in sudan. Pakistan Journal of Nutrition, 18(8), 800-804. doi: 10.3923/pjn.2019.800.804

Moorthy, I. G., Maran, J. P., Ilakya, S., Anitha, S. L., Sabarima, S. P., & Priya, B. (2017). Ultrasound assisted extraction of pectin from waste Artocarpus heterophyllus fruit peel. Ultrasonics Sonochemistry, 34, 525-530.

Morris, A., Barnett, A., & Burrows, O. (2004). Effect of processing on nutrient content of foods. Cajanus, 37(3), 160-164.

Moura, M. D. F. V. D., & Basso, A. M. (2018). Jaca: um estudo de sua química e uma resenha de sua história.

Mudambi, S. R., Rao, S. M., & Rajagopal, M. V. (2015). food Science. New Age International.

Nascimento, A. P. S., Barros, S. L., Santos, N. C., ARAÚNI, A., Cavalcanti, A. S. R. R. M., & Duarte, M. E. M. (2018). Convective drying and influence of temperature on physicochemical properties of commercial sunflower almonds. Revista Brasileira de Produtos Agroindustriais, 20(3), 227-238. http://www.deag.ufcg.edu.br/rbpa/rev203/rev2033.pdf

Nepa/Unicamp. (2011). Tabela Brasileira de Composição de Alimentos (TACO) Campinas, São Paulo: Núcleo de Estudos e Pesquisas em Alimentação. Universidade Estadual de Campinas.

Nogueira, G. F., Soares, C. T., Martin, L. G. P., Fakhouri, F. M., & de Oliveira, R. A. (2020). Influence of spray drying on bioactive compounds of blackberry pulp microencapsulated with arrowroot starch and gum arabic mixture. Journal of microencapsulation, 37(1), 65-76.

Nosratpour, M., & Jafari, S. M. (2019). Bioavailability of minerals (Ca, Mg, Zn, K, Mn, Se) in food products.

Nunes, J. S., Lins, A. D. F., Gomes, J. P., da Silva, W. P., & da Silva, F. B. (2017). Influência da temperatura de secagem nas propriedades físico-química de resíduos abacaxi. Agropecuária Técnica, 38(1), 41-46.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica [recurso eletrônico] (1a edição). NTE/UFSM.

Pereira, N. R., Marsaioli Jr, A., & Ahrné, L. M. (2007). Effect of microwave power, air velocity and temperature on the final drying of osmotically dehydrated bananas. Journal of Food Engineering, 81(1), 79-87.

Ranasinghe, R. A. S. N. Maduwanthi, SDT, & Marapana, RAUJ (2019). Nutritional and Health Benefits of Jackfruit (Artocarpus heterophyllus Lam.): A Review. International Journal of Food Science.

Santos, F. S. D., de Figueirêdo, R. M., Queiroz, A. J. D. M., & Santos, D. D. C. (2017). Drying kinetics and physical and chemical characterization of white-fleshed ‘pitaya’peels. Revista Brasileira de Engenharia Agrícola e Ambiental, 21, 872-877.

Shingare, S. P., & Thorat, B. N. (2013). Effect of drying temperature and pretreatment on protein content and color changes during fluidized bed drying of finger millets (Ragi, Eleusine coracana) sprouts. Drying technology, 31(5), 507-518.

Silva, B. M. C., Oliveira, D. E. C., Lima Farias, B., Costa, V. S., Ferreira, V. B., Nunes, M. R. G., & Resende, O. (2020a). Influence of quality and physiological coloration of guandu bean seeds. Research, Society and Development, 9(7), e975974789-e975974789. doi: 10.33448/rsd-v9i7.4789

Silva, D. F., & Rezende, M. O. O. (2016). Microwave-assisted extraction of phenolic compounds from Canavalia ensiformis leaves: preparation and evaluation of prospective bioherbicide on control of soybean weeds. International Journal of Engineering and Applied Sciences, 3(7), 257615.

Silva, E. G., Gomez, R. S., Gomes, J. P., Silva, W. P., Porto, K. Y., Rolim, F. D., ... & Lima, A. G. (2021). Heat and Mass Transfer on the Microwave Drying of Rough Rice Grains: An Experimental Analysis. Agriculture, 11(1), 8.

e Silva, F. D. A. S., & de Azevedo, C. A. V. (2016). The Assistat Software Version 7.7 and its use in the analysis of experimental data. African Journal of Agricultural Research, 11(39), 3733-3740.

Silva, I. G. D., Andrade, A. P. C. D., Silva, L. M. R. D., & Gomes, D. S. (2019). Elaboração e análise sensorial de biscoito tipo cookie feito a partir da farinha do caroço de abacate. Brazilian Journal of Food Technology, 22.

Staniszewska, I., Liu, Z. L., Zhou, Y., Zielinska, D., Xiao, H. W., Pan, Z., & Zielinska, M. (2020). Microwave-assisted hot air convective drying of whole cranberries subjected to various initial treatments. LWT, 133, 109906.

Towbin, J. A., McKenna, W. J., Abrams, D. J., Ackerman, M. J., Calkins, H., Darrieux, F. C., ... & Zareba, W. (2019). 2019 HRS expert consensus statement on evaluation, risk stratification, and management of arrhythmogenic cardiomyopathy. Heart rhythm, 16(11), e301-e372.

Yuan, Y., & Macquarrie, D. (2015). Microwave assisted extraction of sulfated polysaccharides (fucoidan) from Ascophyllum nodosum and its antioxidant activity. Carbohydrate polymers, 129, 101-107.

Publicado

20/03/2022

Cómo citar

SOUSA, A. P. M. de .; CAMPOS, A. R. N.; SANTANA, R. A. C. de .; DANTAS, D. L.; MACEDO, A. D. B. de .; SILVA, J. R. B. da; MALAQUIAS, A. B.; ALBUQUERQUE, T. da N.; SILVA, G. B. da . .; GOMES, J. P. . Parámetros de calidad física y química del eje central, mesocarpio y semilla de jack sometidos a diferentes processos de secado. Research, Society and Development, [S. l.], v. 11, n. 4, p. e34311427328, 2022. DOI: 10.33448/rsd-v11i4.27328. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/27328. Acesso em: 30 jun. 2024.

Número

Sección

Ingenierías