Identificación de genes de virulencia y resistencia antimicrobiana en Campylobacter spp. de ovejas del estado de Pernambuco en Brasil

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i4.27457

Palabras clave:

Campilobacteriosis; Patogenicidad; Susceptibilidad; Virulencia.

Resumen

El objetivo de este estudio fue realizar la identificación genética de virulencia y resistencia antimicrobiana en ADN de Campylobacter spp. de ovejas en el estado de Pernambuco, Brasil. La presencia de genes de virulencia se investigó mediante la reacción en cadena de la polimerasa. El perfil genético de la resistencia antimicrobiana en muestras de origen ovino se investigó mediante la secuenciación de la región 23S rDNA para identificar las mutaciones A2074G y A2075G y los fragmentos del gen gyrA para identificar las mutaciones C257T y A256G. Se analizaron 40 muestras de ADN de Campylobacter spp, de las cuales 11 eran de Campylobacter jejuni, 12 de Campylobacter fetus subsp. fetus y 17 Campylobacter coli de rebaños de ovejas. En el análisis de virulencia, 37 muestras (92,50%) resultaron positivas para el gen cdtA, 30 (75,00%) para cdtB y 28 (70,00%) para cdtC. En la investigación del gen cadF, 38 (95,00%) muestras resultaron positivas. Para los genes racR, dnaJ y ciaB, 32 (80,00%), 19 (47,50%) y 8 (20,00%) fueron positivos, respectivamente. Solo una muestra tenía el gen pldA y ninguna tenía wlaN y virB11. En el análisis genotípico de resistencia antimicrobiana, todas las muestras tenían la mutación C257T en el gen gyrA, pero la mutación A256G estaba ausente. Tampoco se identificaron mutaciones en 23S rDNA, A2074G y A2075G. De los resultados obtenidos se observa la presencia de la mayoría de los genes de virulencia investigados, con una alta capacidad de resistencia a las fluoroquinolonas. Así, las muestras estudiadas de Campylobacter spp. demostró el potencial de causar infección y permanecer en los huéspedes.

Citas

Adak, G. K., Meakins, S. M., Yip, H., Lopman, B. A. & O'Brien, S. J. 2005. Disease risks from foods, England and Wales, 1996–2000. Emerging Infectious Diseases, 11(3), 365. https://doi.org/10.3201/eid1103.040191

Asakura, M., Samosornsuk, W., Hinenoya, A., Misawa, N., Nishimura, K., Matsuhisa, A. & Yamasaki, S. 2008. Development of a cytolethal distending toxin (cdt) gene-based species-specific multiplex PCR assay for the detection and identification of Campylobacter jejuni, Campylobacter coli and Campylobacter fetus. FEMS Immunology and Medical Microbiology, 52(2), 260-266. https://doi.org/10.1111/j.1574-695X.2007.00369.x

Bacon, D. J., Alm, R. A., Burr, D. H., Hu, L., Kopecko, D. J., Ewing, C. P. & Guerry, P. 2000. Involvement of a plasmid in virulence of Campylobacter jejuni 81-176. Infection and Immunity, 68(8), 384-4390. https://doi.org/10.1128/IAI.68.8.4384-4390.2000

Bang, D. D., Nielsen, E. M., Scheutz, F., Pedersen, K., Handber, K. & Madsen, M. 2003. PCR detection of seven virulence and toxin genes of Campylobacter jejuni and Campylobacter coli isolates from Danish pigs and cattle and cytolethal distending toxin production of the isolates. Journal of Applied Microbiology, 94(6), 1003-1014. https://doi.org/10.1046/j.1365-2672.2003.01926.x

Bras, A. M., Chatterjee, S., Wren, B. W., Newell, D. G. & Ketley, J. M. 1999. A novel Campylobacter jejuni two-component regulatory system important for temperature-dependent growth and colonization. Journal of Bacteriology, 181(10), 3298-3302. https://doi.org/10.1128/JB.181.10.3298-3302.1999

Carvalho, A. F., Silva, D. M., Azevedo, S. S., Piatti, R. M., Genovez, M. E. & Scarcelli, E. 2010. Detecção dos genes da toxina citoletal distensiva em estirpes de Campylobacter jejuni isoladas de carcaças de frangos. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 62(5), 1054-1061. https://www.scielo.br/j/abmvz/a/TH7qgXDxrjdwC7LqYdfXFJs/?format=pdf&lang=pt

Cordeiro, A. M., Oliveira, G. M. D., Rentería, J. M., & Guimarães, C. A. 2007. Revisão sistemática: uma revisão narrativa. Revista do Colégio Brasileiro de Cirurgiões, 34, 428-431. https://doi.org/10.1590/S0100-69912007000600012

Datta, S., Niwa, H. & Itoh, K. 2003. Prevalence of 11 pathogenic genes of Campylobacter jejuni by PCR in strains isolated from humans, poultry meat and broiler and bovine faeces. Journal of Medical Microbiology, 52(4), 345-348. https://doi.org/10.1099/jmm.0.05056-0

Del Collo, L.P., Karns, J. S., Biswas, D., Lombard, J. E., Haley, B. J., Kristensen, R. C., Kopral, C. A, Fossler, C. P. & Van Kessel, J. A. S. 2017. Prevalence, antimicrobial resistance, and molecular characterization of Campylobacter spp. in bulk tank milk and milk filters from US dairies. Journal of Dairy Science, 100(5), 3470-3479. https://doi.org/10.3168/jds.2016-12084

Fouts, D. E., Mongodin, E. E. & Nelson, K. E. 2007. Campylobacter pathogenomics: genomes and beyond, p.162-166. Eds. Bacterial pathogenomics. ASM Press, Washington.

Fredrigo, R. C., Carvalho, A. F., Nassar, A. F. C., Kobayashi, P. F., Costa, A. M., Miyashiro, S. & Scarcelli, E. 2016. Caracterização de estirpes de Campylobacter coli isoladas de carcaças de ovinos e de efluentes de abatedouro do estado de São Paulo. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 68(1), 29-38. https://doi.org/10.1590/1678-4162-8303

Ghorbanalizadgan, M., Bakhshi, B., Lili, A. K., Najar-Peerayeh, S. & Nikmanesh, B. 2014. A molecular survey of Campylobacter jejuni and Campylobacter coli virulence and diversity Iran. Biomedical Journal, 18(3), 158-164. https://doi.org/10.6091/ibj.1359.2014

Giannatale, E., Di Serafino, G., Zilli, K., Alessiani, A., Sacchini, L., Garofolo, G., Aprea, G. & Marotta, F. 2014. Characterization of antimicrobial resistance patterns and detection of virulence genes in Campylobacter isolates in Italy. Sensors, 14(2), 3308-3322. https://doi.org/10.3390/s140203308

Gootz, T. D. & Martin, B. A. 1991. Characterization of high-level quinolone resistance in Campylobacter jejuni. Antimicrobial Agents and Chemotherapy, 35(5), 840-845. https://doi.org/10.1128/AAC.35.5.840

Graham, L. Á., Friel, T. & Woodman, R. Á. 2008. Fibronectin enhances Campylobacter fetus interaction with extracellular matrix components and INT 407 cells. Canadian Journal of Microbiology, 54(1), 37-47. https://doi.org/10.1139/W07-115

Grant, K. A., Belandia, I. U., Dekker, N., Richardson, P. T. & Park, S. F. 1997. Molecular characterization of pldA, the structural gene for a phospholipase A from Campylobacter coli, and its contribution to cell-associated hemolysis. Infection and Immunity, 65(4), 1172-1180. https://doi.org/10.1128/iai.65.4.1172-1180.1997

Hamali, H., Fallah, S., Joozan, I. R. J., Zare, P. & Noorsaadat, G. 2014. Detection of Campylobacter spp. in sheep aborted fetuses by PCR. Trends in life sciences, 3(2), 49-56.

Hamidian, M., Sanaei, M., Bolfion, M., Dabiri, H., Zali, M. R & Walther-Rasmussen, J. 2011. Prevalence of putative virulence markers in Campylobacter jejuni and Campylobacter coli isolated from hospitalized children, raw chicken, and raw beef in Tehran, Iran. Canadian Journal of Microbiology, 57(2), 143-148. https://doi.org/10.1139/W10-089

Helms, M., Simonsen, J., Olsen, K. E. & Molbak, K. 2005. Adverse health events associated with antimicrobial drug resistance in Campylobacter species: a registry-based cohort study. The Journal of Infectious Diseases, 191(7), 1050-1055. https://doi.org/10.1086/428453

Iovine, N. M. 2013. Resistance mechanisms in Campylobacter jejuni. Virulence, 4(3), 230-240. https://doi.org/10.4161/viru.23753

Kaakoush, N. O., Mitchell, H. M. & Man, S. M. 2015. Campylobacter. Molecular Medical Microbiology. 2, 1187-1236. https://doi.org/10.1016/B978-0-12-397169-2.00067-6

Keller, J. & Perreten, V. 2006. Genetic diversity in fluoroquinolone and macrolide-resistant Campylobacter coli from pigs. Veterinary Microbiology, 113(1-2), 103-108. https://doi.org/10.1016/j.vetmic.2005.10.019

Ketley, J. M. 1997. Pathogenesis of enteric infection by Campylobacter. Microbiology, 143(1), 5-21. https://doi.org/10.1099/00221287-143-1-5

Khoshbakht, R., Tabatabaei, M., Shirzad, A. H. & Hosseinzadeh, S. 2014. Occurrence of virulence genes and strain diversity of thermophilic campylobacters isolated from cattle and sheep faecal samples. Iranian Journal of Veterinary Research, 15(2), 138-144.

Kienesberger, S., Sprenger, H., Wolfgruber, S., Halwachs, B., Thallinger, G. G., Perez-Perez, G. I., Blaser, M. J., Zechner, E. L. & Gorkiewicz, G. 2014. Comparative genome analysis of Campylobacter fetus subspecies revealed horizontally acquired genetic elements important for virulence and niche specificity. PLoS One, 9(1), e85491.https://doi.org/10.1371/journal.pone.0085491

Konkel, M. E., Garvis, S. G., Tipton, S. L., Anderson, Jr D. E. & Cieplak, Jr W. 1997. Identification and molecular cloning of a gene encoding a fibronectin‐binding protein (CadF) from Campylobacter jejuni. Molecular Microbiology, 24(5), 953-963. https://doi.org/10.1046/j.1365-2958.1997.4031771.x

Konkel, M. E., Kim, B. J., Klena, J. D., Young, C. R. & Ziprin, R. 1998. Characterization of the Thermal Stress Response of Campylobacter jejuni. Infection and Immunity, 66(8), 3666-3672. https://doi.org/10.1128/IAI.66.8.3666-3672.1998

Korczak, B. M., Zurfluh, M., Emler, S., Kuhn-Oertli, J. & Kuhnert, P. 2009. Multiplex strategy for multilocus sequence typing, fla typing, and genetic determination of antimicrobial resistance of Campylobacter jejuni and Campylobacter coli isolates collected in Switzerland. J Clin Microbiol. 47(7), 1996–2007. https://doi.org/10.1128/JCM.00237-09

Lara-Tejero, M. & Galan, J. E. 2001. CdtA, CdtB, and CdtC form a tripartite complex that is required for cytolethal distending toxin activity. Infection and Immunity, 69(7), 4358-4365. https://doi.org/10.1128/IAI.69.7.4358-4365.2001

Lindmark, B., Rompikuntal, P. K., Vaitkevicius, K, Song, T., Mizunoe, Y., Uhlin, B. E., Guerry, P. & Wai, S. N. 2009. Outer membrane vesicle-mediated release of cytolethal distending toxin (CDT) from Campylobacter jejuni. BMC Microbiology, 9(1), 220. https://doi.org/10.1186/1471-2180-9-220

Linton, D., Gilbert, M., Hitchen, P. G., Dell, A., Morris, H. R., Wakarchuk, W. W., Gregson, N. A. & Wren, B. W. 2000. Phase variation of a -1,3- galactosyltransferase involved in generation of the ganglioside GM1-like lipo-oligosaccharide of Campylobacter jejuni. Molecular Microbiology, 37(3), 501-514. https://doi.org/10.1046/j.1365-2958.2000.02020.x

Luangtongkum, T., Jeon, B., Han, J., Plummer, P., Logue, C. M. & Zhang, Q. 2009. Antibiotic resistance in Campylobacter: emergence, transmission and persistence. Future Microbiology, 4(2), 189-200. https://doi.org/10.2217/17460913.4.2.189

Lúcio, É. C., Borges, J. D. M., Batista Filho, A. F., Gouveia, G. V., Costa, M. M. D., Mota, R. A. & Pinheiro Junior, J. W. 2018. Occurrence of sheep carrier of infection with Campylobacter spp. in the state of Pernambuco, Brazil. Pesquisa Veterinária Brasileira, 38(2), 262-270. https://doi.org/10.1590/1678-5150-PVB-4895

Melo, R. T., Grazziotin, A. L., Júnior, E. C., Prado, R. R., Mendonça, E. P., Monteiro, G. P., Peres, P. A. B. M. & Rossi, D. A. 2019. Evolution of Campylobacter jejuni of poultry origin in Brazil. Food Microbiology, 82, 489-496. https://doi.org/10.1016/j.fm.2019.03.009

Monteiro, E. P., Wild, L. B., Martinez, F. G., Pagnussat, A. D. S., & Peyré-Tartaruga, L. A. 2017. Aspectos biomecânicos da locomoção de pessoas com doença de Parkinson: revisão narrativa. Revista Brasileira de Ciências do Esporte, 39, 450-457. https://doi.org/10.1016/j.rbce.2016.07.003

Oliver, S. P., Patel, D. A., Callaway, T. R. & Torrence, M. E. 2009. ASAS centennial paper: developments and future outlook for preharvest food safety. Journal of Animal Science, 87(1), 419–437. https://doi.org/10.2527/jas.2008-2008-1151

Rajendran, P., Babji, S., George, A. T., Rajan, D. P., Kang, G. & Ajjampur, S. S. 2012. Detection and species identification of Campylobacter in stool samples of children and animals from Vellore, South India. Indian Journal of Medical Microbiology, 30(1), 85–88. https://doi.org/10.4103/0255-0857.93049

Rawat, N., Maansi, D. K. & Upadhyay, A. K. 2018. Virulence typing and antibiotic susceptibility profiling of thermophilic Campylobacters isolated from poultry, animal, and human species. Veterinary world, 11(12), 1698. https://doi.org/10.14202/vetworld.2018.1698-1705

Rivera-Amill, V., Kim, B. J., Seshu, J. & Konkel, M. E. 2001. Secretion of the virulence-associated Campylobacter invasion antigens from Campylobacter jejuni requires a stimulatory signal. The Journal of Infectious Diseases, 183(11), 1607-1616. https://doi.org/10.1086/320704

Sahin, O., Plummer, P. J., Jordan, D. M., Sulaj, K., Pereira, S., Robbe-Austerman, S., Wang, L., Yaeger, M. J., Hoffman, L. J. & Zhang, Q. 2008. Emergence of a tetracycline-resistant Campylobacter jejuni clone associated with outbreaks of ovine abortion in the United States. Journal of Clinical Microbiology, 46(5), 1663-1671. https://doi.org/10.1128/JCM.00031-08

Siddiqui, F. M., Akram, M., Noureen, N., Noreen, Z. & Bokhari, H. 2015. Antibiotic susceptibility profiling and virulence potential of Campylobacter jejuni isolates from different sources in Pakistan. Asian Pacific Journal of Tropical Medicine, 8(3), 197-202. https://doi.org/10.1016/S1995-7645(14)60314-X

Silva, G. O., Carvalho, A. F., Miyashiro, S., Nassar, A. F., Piatti, R. M. & Scarcelli, E. 2012. Detecção de fatores de virulência em estirpes de Campylobacter spp. isoladas de carcaças de suínos abatidos em frigoríficos. Arquivo brasileiro de medicina veterinária e zootecnia, 64(5), 1209-1215. https://doi.org/10.1590/S0102-09352012000500019

Tang, Y., Meinersmann, R. J., Sahin, O., Wu, Z., Dai, L., Carlson, J., Lawrence, J. P., Genzlinger, L., Lejeune, J. T. & Zhang, Q. 2017. Wide but variable distribution of a hypervirulent Campylobacter jejuni clone in beef and dairy cattle in the United States. Applied and Environmental Microbiology, 83(24), e01425-17. https://doi.org/10.1128/AEM.01425-17

Tay, S. T., Devi, S., Pthucheary, S. & Kautner, I. 1996. In vitro demonstration of the invasive ability of Campylobacters. Zentralbl Bakteriology, 283(3), 303-313. https://doi.org/10.1016/S0934-8840(96)80064-8

Vacher, S., Ménard, A., Bernard, E. & Mégraud, F. 2003. PCR-restriction fragment length polymorphism analysis for detection of point mutations associated with macrolide resistance in Campylobacter spp. Antimicrobial Agents and Chemotherapy, 47(3), 1125-1128. https://doi.org/10.1128/AAC.47.3.1125-1128.2003

Van Vliet, A. H. M. & Ketley, J. M. 2001. Pathogenesis of enteric Campylobacter infection. Journal of Applied Microbiology, 90(6), 45-56.

Whitehouse, C. A., Balbo, P. B., Pesci, E. C., Cottle, D. L., Mirabito, P. M. & Pickett, C. L. 1998. Campylobacter jejuni cytolethal distending toxin causes a G2-phase cell cycle block. Infection and Immunity, 66(5), 1934-1940. https://doi.org/10.1128/IAI.66.5.1934-1940.1998

Wieczorek, K. & Osek, J. 2013. Antimicrobial resistance mechanisms among Campylobacter. BioMed Research International, 2013, 1-13. https://doi.org/10.1155/2013/340605

Wilson, D. J., Gabriel, E., Leatherbarrow, A. J., Cheesbrough, J., Gee, S., Bolton, E., Fox, A., Fearnhead, P., Hart, C. A. & Diggle, P. J. 2008. Tracing the source of campylobacteriosis. PLoS genetics, 4(9), e1000203. https://doi.org/10.1371/journal.pgen.1000203

Wysok, B. & Wojtacka, J. 2018. Detection of virulence genes determining the ability to adhere and invade in Campylobacter spp. from cattle and swine in Poland. Microbial Pathogenesis, 115, 257-263. https://doi.org/10.1016/j.micpath.2017.12.057

Yuki, N. 1997. Molecular mimicry between gangliosides and lipopolysaccharides of Campylobacter jejuni isolated from patients with Guillain-Barré syndrome and Miller Fisher syndrome. The Journal of Infectious Diseases, 176(2), 150-153. https://doi.org/10.1086/513800

Zhang, T., Luo, Q., Chen, Y., Li, T., Wen, G., Zhang, R., Ling, L., Lu, Q., Ai, D., Wang, H. & Shao, H. 2016. Molecular epidemiology, virulence determinants and antimicrobial resistance of Campylobacter spreading in retail chicken meat in Central China. Gut pathogens, 8(1), 48. https://doi.org/10.1186/s13099-016-0132-2

Ziprin, R. L., Young, C. R., Byrd, J. A., Stanker, L. H., Hume, M. E., Gray, S. A., Kim, B. J. & Konkel, M. E. 2001. Role of Campylobacter jejuni potential virulence genes in cecal colonization. Avian Diseases, 4, 549-557. https://doi.org/10.2307/1592894

Descargas

Publicado

22/03/2022

Cómo citar

LÚCIO, Érica C. .; BARROS, M. R. .; SOUZA, P. R. E. .; MAIA, R. de C. C. .; MOTA, R. A. .; PINHEIRO JUNIOR, J. W. . Identificación de genes de virulencia y resistencia antimicrobiana en Campylobacter spp. de ovejas del estado de Pernambuco en Brasil. Research, Society and Development, [S. l.], v. 11, n. 4, p. e41511427457, 2022. DOI: 10.33448/rsd-v11i4.27457. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/27457. Acesso em: 30 jun. 2024.

Número

Sección

Ciencias Agrarias y Biológicas