Mecanismos inmunológicos de la infección por SARS-CoV-2 en las complicaciones gestacionales

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i4.27654

Palabras clave:

Factores inmunológicos; Complicaciones gestacionales; COVID-19; Resultado del embarazo.

Resumen

Objetivo: Analizar y sintetizar los principales mecanismos inmunológicos relacionados con mayor gravedad o peor evolución en gestantes infectadas por SARS-CoV-2. Métodos: Esta es una revisión sistemática de la literatura que realizó búsquedas en Medline (vía PubMed), desde octubre de 2021 hasta enero de 2022, con los descriptores Complicaciones del embarazo; factores inmunológicos; SARS-CoV-2, Covid-19, que buscaba responder a la pregunta: “¿Qué mecanismos inmunológicos se relacionan con mayor gravedad o peor evolución en gestantes infectadas por SARS-CoV-2?”. Se eligieron títulos originales, escritos en inglés y publicados a partir de 2020. Se excluyeron revisiones o metaanálisis, editoriales y títulos duplicados. La búsqueda resultó en 189 artículos, de los cuales 11 fueron seleccionados por cumplir con los criterios de elegibilidad. Resultados: Se encontraron cambios en el funcionamiento inmunológico del organismo gestante que pueden predisponer a la gestante a una mayor susceptibilidad al SARS-CoV-2 y a un curso más severo de la enfermedad. Estas alteraciones incluyen niveles reducidos de células Natural Killer y células T helper tipo 1, además de un aumento del estado hiperinflamatorio relacionado con una activación excesiva del sistema del complemento y un aumento de citocinas proinflamatorias, como la interleucina-6 y la necrosis tumoral. factor -α. Además del aumento de la enzima convertidora de angiotensina 2 en la circulación materna, lo que conduce a un aumento de la unión viral en la célula huésped y la infectividad. Conclusión: Debido al impacto que tienen los mecanismos inmunológicos de la evolución de la COVID-19 en la salud materna, se evidencia la importancia de identificar la elevación de estos biomarcadores inmunológicos, que pueden ayudar en la predicción del pronóstico materno y en la definición de tratamiento temprano.

Citas

Abu-Raya, B., Michalski, C., Sadarangani, M., & Lavoie, P. M. (2020). Maternal Immunological Adaptation During Normal Pregnancy. Frontiers in Immunology, 11, 575197. https://doi.org/10.3389/fimmu.2020.575197

Benton, D. J., Wrobel, A. G., Xu, P., Roustan, C., Martin, S. R., Rosenthal, P. B., Skehel, J. J., & Gamblin, S. J. (2020). Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion. Nature, 588(7837), 327–330. https://doi.org/10.1038/s41586-020-2772-0

Cavalcante, M. B., Cavalcante, C. T. de M. B., Sarno, M., Barini, R., & Kwak-Kim, J. (2021). Maternal immune responses and obstetrical outcomes of pregnant women with COVID-19 and possible health risks of offspring. Journal of Reproductive Immunology, 143, 103250. https://doi.org/10.1016/j.jri.2020.103250

Chen, Y., Pang, X., Ding, W., Peng, X., Yang, J., & Zhou, Y. (2021). Retrospective Analysis of Clinical Characteristics and Neonatal Outcomes of Pregnant Women with SARS-COV-2 Infection. Current Medical Science, 41(2), 306–311. https://doi.org/10.1007/s11596-021-2347-9

Choe, P. G., Kim, K.-H., Kang, C. K., Suh, H. J., Kang, E., Lee, S. Y., Kim, N. J., Yi, J., Park, W. B., & Oh, M. (2021). Antibody Responses 8 Months after Asymptomatic or Mild SARS-CoV-2 Infection. Emerging Infectious Diseases, 27(3), 928–931. https://doi.org/10.3201/eid2703.204543

Cosma, S., Carosso, A. R., Corcione, S., Cusato, J., Borella, F., Antonucci, M., Marozio, L., Revelli, A., Preti, M., Ghisetti, V., Di Perri, G., & Benedetto, C. (2021). Longitudinal analysis of antibody response following SARS-CoV-2 infection in pregnancy: From the first trimester to delivery. Journal of Reproductive Immunology, 144, 103285. https://doi.org/10.1016/j.jri.2021.103285

Darif, D., Hammi, I., Kihel, A., El Idrissi Saik, I., Guessous, F., & Akarid, K. (2021). The pro-inflammatory cytokines in COVID-19 pathogenesis: What goes wrong? Microbial Pathogenesis, 153, 104799. https://doi.org/10.1016/j.micpath.2021.104799

Edlow, A. G., Li, J. Z., Collier, A. Y., Atyeo, C., James, K. E., Boatin, A. A., Gray, K. J., Bordt, E. A., Shook, L. L., Yonker, L. M., Fasano, A., Diouf, K., Croul, N., Devane, S., Yockey, L. J., Lima, R., Shui, J., Matute, J. D., Lerou, P. H., … Alter, G. (2020). Assessment of Maternal and Neonatal SARS-CoV-2 Viral Load, Transplacental Antibody Transfer, and Placental Pathology in Pregnancies During the COVID-19 Pandemic. JAMA Network Open, 3(12), e2030455. https://doi.org/10.1001/jamanetworkopen.2020.30455

Favre, G., Pomar, L., Musso, D., & Baud, D. (2020). 2019-nCoV epidemic: What about pregnancies? The Lancet, 395(10224), e40. https://doi.org/10.1016/S0140-6736(20)30311-1

Fenizia, C., Biasin, M., Cetin, I., Vergani, P., Mileto, D., Spinillo, A., Gismondo, M. R., Perotti, F., Callegari, C., Mancon, A., Cammarata, S., Beretta, I., Nebuloni, M., Trabattoni, D., Clerici, M., & Savasi, V. (2020). Analysis of SARS-CoV-2 vertical transmission during pregnancy. Nature Communications, 11(1), 5128. https://doi.org/10.1038/s41467-020-18933-4

Ferrer-Oliveras, R., Mendoza, M., Capote, S., Pratcorona, L., Esteve-Valverde, E., Cabero-Roura, L., & Alijotas-Reig, J. (2021). Immunological and physiopathological approach of COVID-19 in pregnancy. Archives of Gynecology and Obstetrics, 304(1), 39–57. https://doi.org/10.1007/s00404-021-06061-3

Fu, Y., Cheng, Y., & Wu, Y. (2020). Understanding SARS-CoV-2-Mediated Inflammatory Responses: From Mechanisms to Potential Therapeutic Tools. Virologica Sinica, 35(3), 266–271. https://doi.org/10.1007/s12250-020-00207-4

He, Z., Fang, Y., Zuo, Q., Huang, X., Lei, Y., Ren, X., & Liu, D. (2021). Vertical transmission and kidney damage in newborns whose mothers had coronavirus disease 2019 during pregnancy. International Journal of Antimicrobial Agents, 57(2), 106260. https://doi.org/10.1016/j.ijantimicag.2020.106260

Huang, Y., Tu, M., Wang, S., Chen, S., Zhou, W., Chen, D., Zhou, L., Wang, M., Zhao, Y., Zeng, W., Huang, Q., Xu, H., Liu, Z., & Guo, L. (2020). Clinical characteristics of laboratory confirmed positive cases of SARS-CoV-2 infection in Wuhan, China: A retrospective single center analysis. Travel Medicine and Infectious Disease, 36, 101606. https://doi.org/10.1016/j.tmaid.2020.101606

Li, M., Chen, L., Zhang, J., Xiong, C., & Li, X. (2020). The SARS-CoV-2 receptor ACE2 expression of maternal-fetal interface and fetal organs by single-cell transcriptome study. PLOS ONE, 15(4), e0230295. https://doi.org/10.1371/journal.pone.0230295

Lippi, G., & Plebani, M. (2020). Laboratory abnormalities in patients with COVID-2019 infection. Clinical Chemistry and Laboratory Medicine (CCLM), 58(7), 1131–1134. https://doi.org/10.1515/cclm-2020-0198

Liu, H., Wang, L.-L., Zhao, S.-J., Kwak-Kim, J., Mor, G., & Liao, A.-H. (2020). Why are pregnant women susceptible to COVID-19? An immunological viewpoint. Journal of Reproductive Immunology, 139, 103122. https://doi.org/10.1016/j.jri.2020.103122

Marot, S., Malet, I., Leducq, V., Zafilaza, K., Sterlin, D., Planas, D., Gothland, A., Jary, A., Dorgham, K., Bruel, T., Burrel, S., Boutolleau, D., Schwartz, O., Gorochov, G., Calvez, V., & Marcelin, A.-G. (2021). Rapid decline of neutralizing antibodies against SARS-CoV-2 among infected healthcare workers. Nature Communications, 12(1), 1–7. https://doi.org/10.1038/s41467-021-21111-9

Melenotte, C., Silvin, A., Goubet, A.-G., Lahmar, I., Dubuisson, A., Zumla, A., Raoult, D., Merad, M., Gachot, B., Hénon, C., Solary, E., Fontenay, M., André, F., Maeurer, M., Ippolito, G., Piacentini, M., Wang, F.-S., Ginhoux, F., Marabelle, A., … Zitvogel, L. (2020). Immune responses during COVID-19 infection. OncoImmunology, 9(1), 1807836. https://doi.org/10.1080/2162402X.2020.1807836

Miesbach, W., & Makris, M. (2020). COVID-19: Coagulopathy, Risk of Thrombosis, and the Rationale for Anticoagulation. Clinical and Applied Thrombosis/Hemostasis, 26, 107602962093814. https://doi.org/10.1177/1076029620938149

Mor, G., Aldo, P., & Alvero, A. B. (2017). The unique immunological and microbial aspects of pregnancy. Nature Reviews Immunology, 17(8), 469–482. https://doi.org/10.1038/nri.2017.64

Mourad, M., Jacob, T., Sadovsky, E., Bejerano, S., Simone, G. S.-D., Bagalkot, T. R., Zucker, J., Yin, M. T., Chang, J. Y., Liu, L., Debelenko, L., Shawber, C. J., Firestein, M., Ouyang, Y., Gyamfi-Bannerman, C., Penn, A., Sorkin, A., Wapner, R., & Sadovsky, Y. (2021). Placental response to maternal SARS-CoV-2 infection. Scientific Reports, 11(1), 14390. https://doi.org/10.1038/s41598-021-93931-0

Nile, S. H., Nile, A., Qiu, J., Li, L., Jia, X., & Kai, G. (2020). COVID-19: Pathogenesis, cytokine storm and therapeutic potential of interferons. Cytokine & Growth Factor Reviews, 53, 66–70. https://doi.org/10.1016/j.cytogfr.2020.05.002

Novoa, R. H., Quintana, W., Llancarí, P., Urbina-Quispe, K., Guevara-Ríos, E., & Ventura, W. (2021). Maternal clinical characteristics and perinatal outcomes among pregnant women with coronavirus disease 2019. A systematic review. Travel Medicine and Infectious Disease, 39, 101919. https://doi.org/10.1016/j.tmaid.2020.101919

Poon, L. C., Leung, B. W., Ma, T., Yu, F. N. Y., Kong, C. W., Lo, T. K., So, P. L., Leung, W. C., Shu, W., Cheung, K. W., Moungmaithong, S., & Wang, C. C. (2021). Relationship between viral load, infection‐to‐delivery interval and mother‐to‐child transfer of ANTI‐SARS‐COV ‐2 antibodies. Ultrasound in Obstetrics & Gynecology, 57(6), 974–978. https://doi.org/10.1002/uog.23639

Qeadan, F., Mensah, N. A., Tingey, B., & Stanford, J. B. (2021). The risk of clinical complications and death among pregnant women with COVID-19 in the Cerner COVID-19 cohort: A retrospective analysis. BMC Pregnancy and Childbirth, 21(1), 305. https://doi.org/10.1186/s12884-021-03772-y

Qiao, J. (2020). What are the risks of COVID-19 infection in pregnant women? The Lancet, 395(10226), 760–762. https://doi.org/10.1016/S0140-6736(20)30365-2

Rad, H. S., Röhl, J., Stylianou, N., Allenby, M. C., Bazaz, S. R., Warkiani, M. E., Guimaraes, F. S. F., Clifton, V. L., & Kulasinghe, A. (2021). The Effects of COVID-19 on the Placenta During Pregnancy. Frontiers in Immunology, 12, 743022. https://doi.org/10.3389/fimmu.2021.743022

Rahimzadeh, M., & Naderi, N. (2021). Toward an understanding of regulatory T cells in COVID‐19: A systematic review. Journal of Medical Virology, 93(7), 4167–4181. https://doi.org/10.1002/jmv.26891

Rangchaikul, P., & Venketaraman, V. (2021). SARS-CoV-2 and the Immune Response in Pregnancy with Delta Variant Considerations. Infectious Disease Reports, 13(4), 993–1008. https://doi.org/10.3390/idr13040091

Savirón-Cornudella, R., Villalba, A., Esteban, L. M., Tajada, M., Rodríguez-Solanilla, B., Andeyro-Garcia, M., Zapardiel, J., Rite, S., Castán-Larraz, B., & Pérez-López, F. R. (2021). Screening of severe acute respiratory syndrome coronavirus-2 infection during labor and delivery using polymerase chain reaction and immunoglobulin testing. Life Sciences, 271, 119200. https://doi.org/10.1016/j.lfs.2021.119200

Sherer, M. L., Lei, J., Creisher, P. S., Jang, M., Reddy, R., Voegtline, K., Olson, S., Littlefield, K., Park, H.-S., Ursin, R. L., Ganesan, A., Boyer, T., Elsayed, N., Brown, D. M., Walch, S. N., Antar, A. A. R., Manabe, Y. C., Jones-Beatty, K., Golden, W. C., … Burd, I. (2021). Pregnancy alters interleukin-1 beta expression and antiviral antibody responses during severe acute respiratory syndrome coronavirus 2 infection. American Journal of Obstetrics and Gynecology, 225(3), 301.e1-301.e14. https://doi.org/10.1016/j.ajog.2021.03.028

Taglauer, E. S., Wachman, E. M., Juttukonda, L., Klouda, T., Kim, J., Wang, Q., Ishiyama, A., Hackam, D. J., Yuan, K., & Jia, H. (2022). Acute Severe Acute Respiratory Syndrome Coronavirus 2 Infection in Pregnancy Is Associated with Placental Angiotensin-Converting Enzyme 2 Shedding. The American Journal of Pathology, S0002944022000116. https://doi.org/10.1016/j.ajpath.2021.12.011

Wastnedge, E. A. N., Reynolds, R. M., van Boeckel, S. R., Stock, S. J., Denison, F. C., Maybin, J. A., & Critchley, H. O. D. (2021). Pregnancy and COVID-19. Physiological Reviews, 101(1), 303–318. https://doi.org/10.1152/physrev.00024.2020

Xu, H., Zhong, L., Deng, J., Peng, J., Dan, H., Zeng, X., Li, T., & Chen, Q. (2020). High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. International Journal of Oral Science, 12(1), 1–5. https://doi.org/10.1038/s41368-020-0074-x

Zhang, H., & Zhang, H. (2021). Entry, egress and vertical transmission of SARS-CoV-2. Journal of Molecular Cell Biology, 13(3), 168–174. https://doi.org/10.1093/jmcb/mjab013

Zhong, Y., Cao, Y., Zhong, X., Peng, Z., Jiang, S., Tang, T., Chen, H., Li, X., Xia, Y., Cheng, Y., & Zhao, X. (2021). Immunity and coagulation and fibrinolytic processes may reduce the risk of severe illness in pregnant women with coronavirus disease 2019. American Journal of Obstetrics and Gynecology, 224(4), 393.e1-393.e25. https://doi.org/10.1016/j.ajog.2020.10.032

Zhou, J., Wang, Y., Zhao, J., Gu, L., Yang, C., Wang, J., Zhang, H., Tian, Y., Tuo, H., Li, D., Wei, M., & He, B. (2021). The metabolic and immunological characteristics of pregnant women with COVID-19 and their neonates. European Journal of Clinical Microbiology & Infectious Diseases, 40(3), 565–574. https://doi.org/10.1007/s10096-020-04033-0

Publicado

24/03/2022

Cómo citar

LINS, J. J. da S. C.; SOUZA, G. S. de .; MORAIS , E. M. D. de .; SILVA NETO, . P. de C. .; MAGALHÃES, J. J. F. de .; LUNA, V. L. M. .; SILVA, C. M. da .; GALVÃO, P. V. M.; CONRADO, G. A. M. Mecanismos inmunológicos de la infección por SARS-CoV-2 en las complicaciones gestacionales. Research, Society and Development, [S. l.], v. 11, n. 4, p. e49211427654, 2022. DOI: 10.33448/rsd-v11i4.27654. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/27654. Acesso em: 8 jul. 2024.

Número

Sección

Revisiones