Inmunoterapia CAR-T en tratamiento oncológico: revisión de la literatura

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i4.27709

Palabras clave:

Neoplasias; Inmunoterapia adoptiva.; Receptores de antígenos quiméricos; Linfocitos; Sistema inmunitario.

Resumen

Introducción: Inmunoterapias están diseñadas para superar limitaciones de la terapia convencional contra el cáncer mediante estimulación de la respuesta inmunitaria innata al antígeno tumoral. Objetivo: Elaborar una revisión sobre inmunoterapia CAR-T (receptor de antígeno quimérico en células T) en el tratamiento oncológico. Métodos: Levantamiento bibliográfico de revisiones sistemáticas publicadas en PubMed en los últimos 5 años. Resultados: Se seleccionaron 21 estudios. El efecto antitumoral se produce a través de la lisis celular, con la liberación de citoquinas por los linfocitos CAR-T. El escape del tumor está relacionado con la capacidad a no exponer su complejo principal de histocompatibilidad y/o la incapacidad del sistema inmunitario adaptativo para reconocer los antígenos tumorales. Estas dianas moleculares pueden ser proteínas, carbohidratos, o glicolípidos, destacándose el CD19 como diana de esta terapia y en neoplasias como leucemias y linfomas. Se describieron cuatro generaciones de CARs que presentan diferencias en los dominios coestimuladores y eficiencia funcional. La terapia está indicada para casos de recurrencia o refractariedad de neoplasias hematológicas, pero se ha estudiado su aplicabilidad en tumores sólidos. Los eventos adversos de la inmunoterapia CAR-T descritos fueron: síndrome de liberación de citoquinas, neurotoxicidad, shock anafiláctico, reacciones autoinmunes, aplasia de células B, síndrome de lisis tumoral y enfermedad de injerto contra huésped. Conclusiones: Inmunoterapia CAR-T es una terapia prometedora contra el cáncer en recaída o refractario. Actualmente se utiliza principalmente en leucemias y linfomas. La elección de la dosis y generación de CARs debe ser juiciosa, considerando las dianas moleculares específicas de cada neoplasia y su presencia en tejidos sanos, evitando eventos adversos.

Citas

Almeida VL., Leitão A., Reina LCB, Montanari CA, Donnici CL; Lopes MTP. Cancer and cell cicle-specific and cell cicle nonspecific anticancer DNA-interactive agents: an introduction. Quím Nova. 2005; 28(1):118-129

Anwer, F., Shaukat, A. A., Zahid, U., Husnain, M., McBride, A., Persky, D., Lim, M., Hasan, N., & Riaz, I. B. (2017). Donor origin CAR T cells: graft versus malignancy effect without GVHD, a systematic review. Immunotherapy, 9(2), 123–130. https://doi.org/10.2217/imt-2016-0127

Cao, G., Lei, L., & Zhu, X. (2019). Efficiency and safety of autologous chimeric antigen receptor T-cells therapy used for patients with lymphoma: A systematic review and meta-analysis. Medicine, 98(42), e17506. https://doi.org/10.1097/MD.0000000000017506

Cao, J. X., Gao, W. J., You, J., Wu, L. H., Liu, J. L., & Wang, Z. X. (2019). The efficacy of anti-CD19 chimeric antigen receptor T cells for B-cell malignancies. Cytotherapy, 21(7), 769–781. https://doi.org/10.1016/j.jcyt.2019.04.005

Dammeijer, F., Lievense, L. A., Veerman, G. D., Hoogsteden, H. C., Hegmans, J. P., Arends, L. R., & Aerts, J. G. (2016). Efficacy of Tumor Vaccines and Cellular Immunotherapies in Non-Small-Cell Lung Cancer: A Systematic Review and Meta-Analysis. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 34(26), 3204–3212. https://doi.org/10.1200/JCO.2015.66.3955

Drokow, E. K., Ahmed, H., Amponsem-Boateng, C., Akpabla, G. S., Song, J., Shi, M., & Sun, K. (2019). Survival outcomes and efficacy of autologous CD19 chimeric antigen receptor-T cell therapy in the patient with diagnosed hematological malignancies: a systematic review and meta-analysis. Therapeutics and clinical risk management, 15, 637–646. https://doi.org/10.2147/TCRM.S203822

Grigor EJM, Fergusson D, Kekre N, Montroy J, Atkins H, Seftel MD, et al. Risks and benefits of chimeric antigen receptor T-Cell (CAR-T) therapy in cancer: a systematic review and meta-Analysis. Transfus Med Rev. 2019 Apr;33(2):98-110.

Hao, L., Li, T., Chang, L. J., & Chen, X. (2019). Adoptive Immunotherapy for B-cell Malignancies Using CD19- Targeted Chimeric Antigen Receptor T-Cells: A Systematic Review of Efficacy and Safety. Current medicinal chemistry, 26(17), 3068–3079. https://doi.org/10.2174/0929867324666170801101842

Holzinger, A., Barden, M., & Abken, H. (2016). The growing world of CAR T cell trials: a systematic review. Cancer immunology, immunotherapy : CII, 65(12), 1433–1450. https://doi.org/10.1007/s00262-016-1895-5

Jin, Z., Xiang, R., Qing, K., Li, X., Zhang, Y., Wang, L., Zhu, H., Mao, Y., Xu, Z., & Li, J. (2018). The severe cytokine release syndrome in phase I trials of CD19-CAR-T cell therapy: a systematic review. Annals of hematology, 97(8), 1327–1335. https://doi.org/10.1007/s00277-018-3368-8

Knudson AG. Antioncogenes and human cancer. Proc Natl Acad Sci USA. 1993;90(23):10914-10921.

Li, J., Wu, Z., & Zhao, N. (2019). Individual Patient Data Meta-Analysis from 16 Trials for Safety Factors in Cytokine Release Syndrome After CAR-T Therapy in Patients with Non-Hodgkin Lymphoma (NHL) and Acute Lymphoblastic Leukemia. Advances in therapy, 36(10), 2881–2894. https://doi.org/10.1007/s12325-019-01056-8

Maus MV, Fraietta JA, Levine BL, Kalos M, Zhao Y, June CH. Adoptive immunotherapy for cancer or viruses. Annu Rev Immunol. 2014;32:189-225.

Nagle, K., Tafuto, B., Palladino Kim, L., & Parrott, J. S. (2018). Effect of transplant status in CD19-targeted CAR T-cell therapy: a systematic review and meta-analysis. Medical oncology (Northwood, London, England), 35(11), 144. https://doi.org/10.1007/s12032-018-1204-6

Oppermann CP. Entendendo o câncer. 1 ed. Porto Alegre: Artmed; 2014.

Petrou P. (2019). Is it a Chimera? A systematic review of the economic evaluations of CAR-T cell therapy. Expert review of pharmacoeconomics & outcomes research, 19(5), 529–536. https://doi.org/10.1080/14737167.2019.1651646

Pettitt D, Arshad Z, Smith J, Stanic T, Holländer G, Brindley D. CAR-T cells: a systematic review and mixed methods analysis of the clinical trial landscape. Mol Ther. 2018 Feb 7;26(2):342-353.

Riaz, I. B., Zahid, U., Kamal, M. U., Husnain, M., McBride, A., Hua, A., Hamadani, A. A., George, L., Zeeshan, A., Sipra, Q. R., Raina, A., Rahman, B., Puvvada, S., & Anwer, F. (2017). Anti-CD 19 and anti-CD 20 CAR-modified T cells for B-cell malignancies: a systematic review and meta-analysis. Immunotherapy, 9(12), 979–993. https://doi.org/10.2217/imt-2017-0062

Sahlolbei, M., Dehghani, M., Kheiri Yeghane Azar, B., Vafaei, S., Roviello, G., D'Angelo, A., Madjd, Z., & Kiani, J. (2020). Evaluation of targetable biomarkers for chimeric antigen receptor T-cell (CAR-T) in the treatment of pancreatic cancer: a systematic review and meta-analysis of preclinical studies. International reviews of immunology, 39(5), 223–232. https://doi.org/10.1080/08830185.2020.1776274

Shah NN, Fry TJ. Mechanisms of resistance to CAR T cell therapy. Nat Rev Clin Oncol 16, 372–385 (2019).

Sohail, A., Mushtaq, A., Iftikhar, A., Warraich, Z., Kurtin, S. E., Tenneti, P., McBride, A., & Anwer, F. (2018). Emerging immune targets for the treatment of multiple myeloma. Immunotherapy, 10(4), 265–282. https://doi.org/10.2217/imt-2017-0136

Werle CH. Avaliação do efeito terapêutico em tumores murinos de cepas atenuadas de Salmonella enterica typhimurium. [Dissertação]. Campinas: Universidade Estadual de Campinas; 2016.

WHO, World Health Organization. (2021). Cancer https://www.who.int/news-room/fact-sheets/detail/cancer

Zeng, Y., Ruan, W., He, J., Zhang, J., Liang, W., Chen, Y., He, Q., & He, J. (2016). Adoptive Immunotherapy in Postoperative Non-Small-Cell Lung Cancer: A Systematic Review and Meta-Analysis. PloS one, 11(9), e0162630. https://doi.org/10.1371/journal.pone.0162630

Zhang J, Wang L. The emerging world of TCR-T cell trials against cancer: a systematic review. Technol Cancer Res Treat. 2019 Jan 1;18:1533033819831068.

Zhao, B., Zhang, W., Yu, D., Xu, J., & Wei, Y. (2017). Adoptive immunotherapy shows encouraging benefit on non-small cell lung cancer: a systematic review and meta-analysis. Oncotarget, 8(68), 113105–113119. https://doi.org/10.18632/oncotarget.19373

Zhu, J., Li, R., Tiselius, E., Roudi, R., Teghararian, O., Suo, C., & Song, H. (2017). Immunotherapy (excluding checkpoint inhibitors) for stage I to III non-small cell lung cancer treated with surgery or radiotherapy with curative intent. The Cochrane database of systematic reviews, 12(12), CD011300. https://doi.org/10.1002/14651858.CD011300.pub2

Zhu, Y., Tan, Y., Ou, R., Zhong, Q., Zheng, L., Du, Y., Zhang, Q., & Huang, J. (2016). Anti-CD19 chimeric antigen receptor-modified T cells for B-cell malignancies: a systematic review of efficacy and safety in clinical trials. European journal of haematology, 96(4), 389–396. https://doi.org/10.1111/ejh.12602

Descargas

Publicado

28/03/2022

Cómo citar

AZZAM, G. B. .; OLIVEIRA, E. G. de .; AZZAM, R. S. .; MENEZES-RODRIGUES, F. S. . Inmunoterapia CAR-T en tratamiento oncológico: revisión de la literatura. Research, Society and Development, [S. l.], v. 11, n. 4, p. e57411427709, 2022. DOI: 10.33448/rsd-v11i4.27709. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/27709. Acesso em: 22 nov. 2024.

Número

Sección

Ciencias de la salud