Modelado y optimización experimental en la evaluación de interacciones químicas de mezclas de quitosano/polivinilpirrolidona
DOI:
https://doi.org/10.33448/rsd-v11i5.28063Palabras clave:
Quitosano; Polivinilpirrolidona; Interacciones químicas; Mejoramiento; Mezclas.Resumen
Los biomateriales poliméricos destacan por su gran flexibilidad para adaptar sus propiedades físicas, químicas, mecánicas, biológicas, su procesabilidad y la posibilidad de utilizarlos en diferentes situaciones. Entre los diversos polímeros, el quitosano y la polivinilpirrolidona son prometedores para el desarrollo de apósitos, sin embargo, tienen limitaciones de propiedades individualmente que pueden optimizarse cuando se combinan. Por lo tanto, esta investigación busca evaluar las interacciones químicas de mezclas de PVP/quitosano a diferentes concentraciones y proporciones másicas, mediante el modelado y optimización experimental aplicando la metodología de superficie de respuesta (MSR) de la espectroscopia en la Espectroscopia Infrarroja por Transformada de Fourier (FTIR) de polímeros puros. A partir de los espectros FTIR de los polímeros puros se observaron los grupos funcionales característicos de ambos polímeros, los cuales son consistentes con la literatura. Mediante el modelo lineal aplicado se determinaron las interacciones químicas entre el quitosano y la PVP K—90 en las diferentes proporciones y concentraciones de los polímeros, y utilizando el MSR con un modelo compuesto central se verificó el comportamiento de la interacción en la mezcla para las diferentes condiciones y cómo influye la proporción de masa en la mezcla y la concentración. A la vista del estudio, se observa que la simulación de la interacción química de la mezcla polimérica considerando el modelo lineal y usando la metodología del modelo compuesto central de superficie de respuesta fue satisfactoria. La optimización experimental a partir del modelado es prometedora para comprender el comportamiento de la mezcla, ayudando a desarrollar combinaciones y predicciones de interacciones, además de permitir una mejora en los experimentos prácticos.
Citas
Bianco, G., Soldi, M. S., Pinheiro, E. A., Pires, A. T. N., Gehlen, M. H., & Soldi, V. (2003). Thermal stability of poly ( N -vinyl-2-pyrrolidone-co-methacrylic acid ) copolymers in inert atmosphere. Polymer Degradation and Stability, 80, 567–574. https://doi.org/10.1016/S0141-3910(03)00053-3
Bispo, V. M., Mansur, A. A. P., & Mansur, H. S. (2009). Caracterização por Espectroscopia de Infravermelho de Filmes de Quitosana com Diferentes Quantidades de Agente Reticulante. Congresso Brasileiro de Polímeros, 1–10. https://www.ipen.br/biblioteca/cd/cbpol/2009/PDF/297.pdf
Brant, A. J. C. (2008). Preparação e Caracterização de Hidrogéis a partir de Misturas de Soluções de Quitosana e Poli(N-vinil-2-pirrolidona). UNIVERSIDADE DE SÃO PAULO.
Chen, J. P., Kuo, C. Y., & Lee, W. L. (2012). Thermo-responsive wound dressings by grafting chitosan and poly(N-isopropylacrylamide) to plasma-induced graft polymerization modified non-woven fabrics. Applied Surface Science, 262, 95–101. https://doi.org/10.1016/j.apsusc.2012.02.106
Consendey, M. E. E., Celestino, G. de G., Shiguihara, A. L., & Junior, J. A. (2021). Preparo e caracterização de blendas de PVP/PAADDA / Preparation and characterizaion of PVP/PAADDA blends. Brazilian Journal of Development, 7(10), 95067–95080. https://doi.org/10.34117/bjdv7n10-18
Elsabee, M. Z., & Abdou, E. S. (2013). Chitosan based edible films and coatings : A review. Materials Science & Engineering C, 33(4), 1819–1841. https://doi.org/10.1016/j.msec.2013.01.010
Fang, L., & Goh, S. H. (2000). Miscible chitosan/tertiary amide polymer blends. Journal of Applied Polymer Science, 76(12), 1785–1790.
Ferreira, A. C., Diniz, M. F., Babetto Ferreira, A. C., Sanches, N. B., & da Costa Mattos, E. (2020). FT-IR/UATR and FT-IR transmission quantitative analysis of PBT/PC blends. Polymer Testing, 85(February). https://doi.org/10.1016/j.polymertesting.2020.106447
Franco, P., & De Marco, I. (2020). The use of poly(N-vinyl pyrrolidone) in the delivery of drugs: A review. Polymers, 12(5), 18–21. https://doi.org/10.3390/POLYM12051114
Franco, P. Q., Silva, J., & Borges, J. P. (2010). Produção de Fibras de Hidroxiapatite por Electrofiação. Ciência & Tecnologia Dos Materiais, 22(1/2), 57–64.
Grant, J. J., Pillai, S. C., Perova, T. S., Hehir, S., Hinder, S. J., McAfee, M., & Breen, A. (2021). Electrospun fibres of chitosan/PVP for the effective chemotherapeutic drug delivery of 5-fluorouracil. Chemosensors, 9(4), 1–19. https://doi.org/10.3390/chemosensors9040070
Kou, S. (Gabriel), Peters, L. M., & Mucalo, M. R. (2021). Chitosan: A review of sources and preparation methods. In International Journal of Biological Macromolecules (Vol. 169). Elsevier B.V. https://doi.org/10.1016/j.ijbiomac.2020.12.005
Kurakula, M., & Rao, G. S. N. K. (2020). Pharmaceutical assessment of polyvinylpyrrolidone (PVP): As excipient from conventional to controlled delivery systems with a spotlight on COVID-19 inhibition. Journal of Drug Delivery Science and Technology, 60(September), 102046. https://doi.org/10.1016/j.jddst.2020.102046
Morariu, S., Bercea, M., Teodorescu, M., & Avadanei, M. (2016). Tailoring the properties of poly(vinyl alcohol)/poly(vinylpyrrolidone) hydrogels for biomedical applications. European Polymer Journal, 84, 313–325. https://doi.org/10.1016/j.eurpolymj.2016.09.033
Muxika, A., Etxabide, A., Uranga, J., Guerrero, P., & de la Caba, K. (2017). Chitosan as a bioactive polymer: Processing, properties and applications. International Journal of Biological Macromolecules, 105, 1358–1368. https://doi.org/10.1016/j.ijbiomac.2017.07.087
Oliveira, M. Z. F. da S., Fernandes, T. S. M., & Carvalho, T. V. (2021). Síntese e caracterização de beads de quitosana comercial reticulados com glutaraldeído. Revista Materia, 26(2). https://doi.org/10.1590/S1517-707620210002.1261
Pires, A. L. R., Bierhalz, A. C. K., & Moraes, Â. M. (2015). Biomaterials: Types, Applications, and Market. Química Nova, 38(7), 957–971. https://doi.org/10.5935/0100-4042.20150094
Prashanth, K. V. H., & Tharanathan, R. N. (2007). Chitin/chitosan: modifications and their unlimited application potential—an overview. Trends in Food Science & Technology, 18(3), 117–131.
Rahma, A., Munir, M. M., Khairurrijal, Prasetyo, A., Suendo, V., & Rachmawati, H. (2016). Intermolecular Interactions and the Release Pattern of Electrospun Curcumin-Polyvinyl(pyrrolidone) Fiber. Biological and Pharmaceutical Bulletin, 39(2), 163–173. https://doi.org/10.1248/bpb.b15-00391
Raut, H. K., Das, R., Liu, Z., Liu, X., & Ramakrishna, S. (2020). Biocompatibility of Biomaterials for Tissue Regeneration or Replacement. Biotechnology Journal, 15(12), 1–14. https://doi.org/10.1002/biot.202000160
Regu, T., Ambika, C., Karuppasamy, K., Rajan, H., Vikraman, D., Jeon, J., Kim, H., & Raj, T. A. B. (2019). Proton transport and dielectric properties of high molecular weight polyvinylpyrrolidone ( PVP K90 ) based solid polymer electrolytes for portable electrochemical devices. Journal of Materials Science: Materials in Electronics, 30(12), 11735–11747. https://doi.org/10.1007/s10854-019-01535-2
Rigoli, P. S., Murakami, L. M. S., Diniz, M. F., Azevedo, M. F. P., Cassu, S. N., Mattos, E. da C., & Dutra, R. de C. L. (2019). Quantification of aerospace polymer blends by thermogravimetric analysis and infrared spectrometry. Journal of Aerospace Technology and Management, 11, 1–12. https://doi.org/10.5028/jatm.v11.986
Rinaudo, M., & Ã, M. R. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31(7), 603–632. https://doi.org/10.1016/j.progpolymsci.2006.06.001
Santos, F. dos, Costa, R. R. C. da, & Ikegami, R. A. (2020). Caracterização Do Comportamento Mecânico No Ensaio De Flexão De Uma Blenda Polimérica De Poliestireno/ Characterization of the Mechanical Behaviour in the Bending Test of a Polystyrene Polymeric Blend. Brazilian Journal of Development, 6(10), 78504–78513. https://doi.org/10.34117/bjdv6n10-327
Silva, M. C., Nascimento, I., Ribeiro, V. S., & Fook, M. V. L. (2016). Evaluation of the obtaining method of chitosan/ curcumin scaffolds on the structure, morphology and thermal properties | Avaliação do método de obtenção de scaffolds quitosana/curcumina sobre a estrutura, morfologia e propriedades térmicas. Revista Materia, 21(3), 560–568.
Sobreira, T. G. P., Silva, L. A. da, Menezes, F. D. de, França, E. J., & Aquino, K. A. da S. (2020). Aspectos Estruturais de Esferas de Quitosana/PVA Reticuladas com Glutaraldeído Submetidas a Diferentes Tratamentos Térmicos. Quimica Nova, 43(9), 1251–1257. https://doi.org/http://dx.doi.org/10.21577/0100-4042.20170613
Spiegel, S. (2018). Recent advances in applied polymer science. In Journal of Applied Polymer Science (Vol. 135, Issue 24). https://doi.org/10.1002/app.46279
Swathi, P. H., V., A. M., Suresh, S., Guin, J. P., S, N. M., Kanni, P., Varshney, L., N, S. H., & To. (2020). Effect of Gamma Sterilization on the Properties of Microneedle Array Transdermal Patch System. Drug Development and Industrial Pharmacy, 0(0), 000. https://doi.org/10.1080/03639045.2020.1742144
Teodorescu, M., Bercea, M., & Morariu, S. (2019). Biomaterials of PVA and PVP in medical and pharmaceutical applications: Perspectives and challenges. Biotechnology Advances, 37(1), 109–131. https://doi.org/10.1016/j.biotechadv.2018.11.008
Williams, D. F. (2008). On the mechanisms of biocompatibility. Biomaterials, 29(20), 2941–2953. https://doi.org/10.1016/j.biomaterials.2008.04.023
Wladymyr, J. B. S., Cardoso, M. J. B., Almeida, K. V, Nascimento, E. P., Farias, K. A. S., & Fook, M. V. L. (2013). Desenvolvimento de compósitos a base de quitosana / fosfato de cálcio. Revista Eletrônica de Materiais e Processos, 8.3, 136–140.
Zarrintaj, P., Saeb, M. R., Jafari, S. H., & Mozafari, M. (2019). Application of compatibilized polymer blends in biomedical fields. In Compatibilization of Polymer Blends: Micro and Nano Scale Phase Morphologies, Interphase Characterization, and Properties. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816006-0.00018-9
Zidan, H. M., Abdelrazek, E. M., Abdelghany, A. M., & Tarabiah, A. E. (2019). Characterization and some physical studies of PVA/PVP filled with MWCNTs. Journal of Materials Research and Technology, 8(1), 904–913. https://doi.org/10.1016/j.jmrt.2018.04.023
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Keilly Grangeiro Wanderley; Bruna Giovanna Barbosa dos Santos; Kleilton Oliveira Santos; Wladymyr Jefferson Bacalhau de Sousa; Pedro Carlos de Assis Júnior; Márcio José Batista Cardoso; Marcus Vinícius Lia Fook
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.