Biomecánica del fémur y húmero del zorro cangrejero (Cerdocyon thous, Linnaeus 1776) en ensayos de flexión de tres puntos y compresión axial

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i5.28144

Palabras clave:

Biología ósea; Mecánica de fractura; Ortopedia; Microscopía electrónica de barrido.

Resumen

El presente estudio se realizó con el objetivo de evaluar el comportamiento mecánico del fémur y húmero de Cerdocyon thous mediante ensayos de flexión en tres puntos y compresión axial. Para ello se utilizaron 13 fémures y 15 húmeros en la prueba de flexión, y 14 fémures y 15 húmeros en la prueba de compresión; una vez finalizadas las pruebas, se recogieron fragmentos óseos para su evaluación mediante microscopía óptica convencional y de luz polarizada, y microscopía electrónica de barrido. Se observó que el húmero es más resistente en relación al fémur en ambas pruebas, y que la longitud y el peso del hueso, además del ancho de la diáfisis, influyen en el comportamiento mecánico. La evaluación microscópica mostró que, en la superficie craneal de los huesos fracturados bajo flexión, la fractura fue causada por el mecanismo de desviación, mientras que la superficie caudal se rompió por delaminación. En huesos sometidos a compresión axial, las fracturas diafisarias ocurrieron por deflexión, mientras que las fracturas fisarias fueron causadas por varios mecanismos. No hubo correlación significativa entre la disposición de las fibras de colágeno o el contenido de minerales sobre las propiedades mecánicas obtenidas en ambos ensayos. Se puede concluir que existen diferencias significativas en el comportamiento mecánico del fémur y húmero de C. thous, donde el húmero es más resistente que el fémur tanto en cargas de flexión como de compresión. Dichos datos nos permiten predecir el comportamiento mecánico óseo de C. thous ante traumatismos por impactos de flexión y compresión, como los resultantes del pisoteo.

Citas

ABNT, Associação Brasileira de Normas Técnicas. (2017) NBR 7190 - Projeto de estruturas de madeira. Rio de Janeiro, 1997. <https://www.abntcatalogo.com.br/norma.aspx?ID=3395>. Access 04 jun. 2021, 20:36.

Araujo Cezar, H. R.; Abrantes, S. H. F.; de Lima, J. P. R.; de Medeiros, J. B.; Abrantes, M. M. R.; da Nóbrega Carreiro, A. & de Lucena Barbosa, J. P. (2021). Mamíferos silvestres atropelados em estradas da Paraíba, Nordeste do Brasil. Brazilian Journal of Development, 7(3), 30694-30698. https://doi.org/10.34117/bjdv7n3-679

Ascenzi, A. & Bonucci, E. (1968). The compressive properties of single osteons. The Anatomical Record, 161(3):377-391. https://doi.org/10.1002/ar.1091610309

ASTM, American Society for Testing and Materials. (2017). Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. ASTM D790-17. <https://www.astm.org/d0790-03.html>. Access 12 sep 2020, 09:18.

Berta, A. (1982). Cerdocyon thous. Mammalian Species, 186, 1-4. https://doi.org/10.2307/3503974

Bloebaum, R. D.; Skedros, J. G.; Vajda, E. G.; Bachus, K. N.; Constantz, B. R. (1997). Determining mineral content variations in bone using backscattered electron imaging. Bone, 20(5), 485-490. https://doi.org/10.1016/S8756-3282(97)00015-X

Borders, S.; Petersn, K. R. & Orne, D. (1977). Prediction of bending strength of long bones from measurements of bending stiffness and bone mineral content. Journal of Biomechanical Engineering, 99(1), 40-44. https://doi.org/10.1115/1.3426267

Bouxsein, M. L.; Coan, B. S. & Lee, S. C. (1999). Prediction of the strength of the elderly proximal femur by bone mineral density and quantitative ultrasound measurements of the heel and tibia. Bone, 25(1), 49-54. https://doi.org/10.1016/S8756-3282(99)00093-9

Bouxsein, M. L. & Karasik, D. (2006). Bone geometry and skeletal fragility current osteoporosis reports. Current Osteoporosis Reports, 4(2), 49-56. https://doi.org/10.1007/s11914-006-0002-9

Brum, T. R.; Santos-Filho, M.; Canale, G. R. & Ignácio, A. R. A. (2018). Effects of roads on the vertebrates diversity of the Indigenous territory Paresi and its surrounding. Brazilian Journal of Biology, 78(1), 125-132. https://doi.org/10.1590/1519-6984.08116

Carlton, W. W. & Mcgavin, M. D. (1998). Patologia Veterinária Especial de Thonson, 2nd edn. Artes Médicas Sul, Porto Alegre.

Castilho, M. S.; Rahal, S. C.; Mamprim, M. J.; Inamassu, L. R.; Melchert, A.; Agostinho, F. S.; Mesquita, L. R.; Teixeira, H.F.; & Teixeira, C. R. (2018). Radiographic measurements of the hindlimbs in crab‐eating foxes (Cerdocyon thous, Linnaeus, 1766). Anatomia, Histologia, Embryologia, 47(3), 216-221. https://doi.org/10.1111/ahe.12344

Cordey, J. (2000). Introduction: Basic concept and definitions in mechanics. Injury, 31, 1-84. https://doi.org/10.1016/S0020-1383(00)80039-X

Courtenay, O. & Maffei, L. (2004). Cerdocyon thous (Linnaeus, 1766). Canid Action Plan. IUCN Publications, Gland, Switzerland.

Currey, J. D. (1990). Physical characteristics affecting the tensile failure properties of compact bone. Journal of Biomechanics, 23(8), 837-844. https://doi.org/10.1016/0021-9290(90)90030-7

Currey, J. D. (1970). The mechanical properties of bone. Clinical Orthopaedics and Related Research, 73, 210-231. https://doi.org/10.1097/00003086-197011000-00023

Currey, J. D. (2012). The structure and mechanics of bone. Journal of Material Sciences, 47(1), 41-54. https://doi.org/10.1007/s10853-011-5914-9

Einhorn, T. (1992). Bone strength: the bottom line. Calcified Tissue International, 51(5), 333-339. https://doi.org/10.1007/BF00316875

Fleck, C. & Eifler, D. (2003). Deformation behaviour and damage accumulation of cortical bone specimens from the equine tibia under cyclic loading. Journal of Biomechanics, 36(2), 179-189. https://doi.org/10.1016/S0021-9290(02)00364-0

Ginsberg, J.R.; & Macdonald, D.W. (1990). Foxes, wolves, jackals, and dogs: an action plan for the conservation of canids. IUCN Publications, Gland, Switzerland.

Grilo, C. et al. (2018). Brazil road‐kill: a data set of wildlife terrestrial vertebrate road‐kills. Ecology, 99(11), 2625.

Hastings, G. W. & Ducheyne, P. (1984). Natural and living biomaterials. CRC Press, Boca Raton.

Heřt, J.; Fiala, P.; & Petrtýl, M .(1994). Osteon orientation of the diaphysis of the long bones in man. Bone, 15(3), 269-277. https://doi.org/10.1016/8756-3282(94)90288-7

Hoc, T.; Henry, L.; Verdier, M.; Aubry, D. Sedel, L. & Meunier, A. (2006). Effect of microstructure on the mechanical properties of Haversian cortical bone. Bone, 38(4), 466-474. https://doi.org/10.1016/j.bone.2005.09.017

Holanda, A; Volpon, J. B. & Shimano, A. C. (1999). Efeitos da orientação das fibras de colágeno nas propriedades mecânicas de flexão e impacto dos ossos. Revista Brasileira de Ortopedia, 34(11/12), 579-584.

Koester, K. J.; Ager, J. W. & Ritchie, R. O. (2008). The true toughness of human cortical bone measured with realistically short cracks. Nature Materials, 7(8), 672-677. https://doi.org/10.1038/nmat2221

Lochmüller, E. M.; Bürklein, D.; Kuhn, V.; Glaser, C.; Müller, R.; Glüer, C. C. & Eckstein, F. (2002a). Mechanical strength of the thoracolumbar spine in the elderly: prediction from in situ dual-energy X-ray absorptiometry, quantitative computed tomography (QCT), upper and lower limb peripheral QCT, and quantitative ultrasound. Bone, 31(1), 77-84. https://doi.org/10.1016/S8756-3282(02)00792-5

Lochmüller, E. M.; Groll, O.; Kuhn, V. & Eckstein, F. (2002b). Mechanical strength of the proximal femur as predicted from geometric and densitometric bone properties at the lower limb versus the distal radius. Bone, 30(1), 207-216. https://doi.org/10.1016/S8756-3282(01)00621-4

Lochmüller, E. M.; Lill, C. A.; Kuhn, V.; Schneider, E. & Eckstein, F. (2002c). Radius bone strength in bending, compression, and falling and its correlation with clinical densitometry at multiple sites. Journal of Bone and Mineral Research, 17(9), 1629-1638. https://doi.org/10.1359/jbmr.2002.17.9.1629

Loffredo, M. D. C. M. & Ferreira, I. (2007). Resistência mecânica e tenacidade à fratura do osso cortical bovino. Research on Biomedical Engineering, 23(2), 159-168.

Markel, M. D.; Sielman, E.; Rapoff, A. J. & Kohles, S. S. (1994). Mechanical properties of long bones in dogs. American Journal of Veterinary Research, 55(8), 1178-1183

Martin, R. B. & Boardman, D. L. (1993). The effects of collagen fiber orientation, porosity, density, and mineralization on bovine cortical bone bending properties. Journal of Biomechanics, 26(9); 1047-1054. https://doi.org/10.1016/S0021-9290(05)80004-1

Martin, R. B.; Lau, S. T.; Mathews, P. V.; Gibson, V. A. & Stover, S. M. (1996). Collagen fiber organization is related to mechanical properties and remodeling in equine bone. A comparsion of two methods. Journal of Biomechanics, 29(12), 1515-1521. https://doi.org/10.1016/S0021-9290(96)80002-9.

Martins, F. P.; Souza, E. C.; Bernardes, F. C. S.; Abidu-Figueiredo, M.; Kasper, C. B. & Souza-Junior, P. (2021). Anatomical variations in cervical vertebrae in two species of neotropical canids: What is the meaning? Anatomia, Histologia, Embryologya, 50(1), 212-217. https://doi.org/10.1111/ahe.12609

Miculescu, F.; Stan, G. E.; Ciocan, L. T.; Miculescu, M.; Berbecaru, A. & Antoniac, I. (2012). Cortical bone as resource for producing biomimetic materials for clinical use. Digest Journnal of Nanomater Biostructures, 7(4), 1667-1677.

Morse, A. (1945). Formic acid-sodium citrate decalcification and butyl alcohol dehydration of teeth and bones for sectioning in paraffin. Journal of Dental Research, 24(3-4), 143-153. https://doi.org/10.1177/00220345450240030501

Moyle, D. D.; Welborn III, J. W. & Cooke, F. W. (1978). Work to fracture of canine femoral bone. Journal of Biomechanics, 11(10-12), 435-440. https://doi.org/10.1016/0021-9290(78)90055-6

Müller, M. E.; Webber, C. E. & Bouxsein, M. L. (2003). Predicting the failure load of the distal radius. Osteoporosis International, 14(4), 345-352. https://doi.org/10.1007/s00198-003-1380-9

Nalla, R. K.; Stölken, J. S.; Kinney, J. H. & Ritchie, R. O. (2005). Fracture in human cortical bone: local fracture criteria and toughening mechanisms. Journal of Biomechanichs, 38(7), 1517-1525. https://doi.org/10.1016/j.jbiomech.2004.07.010

Nishioka, R. S.; Yamasaki, M. C.; De Melo Nishioka, G. N. & Balducci, I. (2010). Estudo da ocorrência de micro deformações ao redor de três implantes de hexágono externo, sob a influência da fundição de coifas plásticas e usinadas. Brazilian Dental Journal, 13(3/4), 15-21. https://doi.org/10.14295/bds.2010.v13i3/4.63

Ossa-Nadjar, O. & Ossa, J. (2013). Fauna silvestre atropellada en dos vías principales que rodean los Montes de María, Sucre, Colombia. Revista Colombiana Ciencia Animal, 5, 158-164. https://doi.org/10.24188/recia.v5.n1.2013.481

Palierne, S.; Mathon, D.; Asimus, E.; Concordet, D.; Meynaud-Collard, P.; Autefage, A. (2008). Segmentation of the canine population in different femoral morphological groups. Research in Veterinary Science, 85, 407-417. https://doi.org/10.1016/j.rvsc.2008.02.010

Pessutti, C.; Santiago, M. E. B. & Oliveira, L. T. F. (2001). Order Carnivora, Family Canidae (Dogs, Foxes, Maned foxes). In: Fowler, M. E. & Cubas, Z. S. (eds.) Biology, medicine, and surgery of South American wild animals, Iowa State University Press.

Pinheiro, L. L.; Branco, É.; Souza, D. C.; Pereira, L. H. C. & Lima, A. R. (2014). Description of plexus brachial of crab-eating foxes (Cerdocyon thous Linnaeus, 1766). Ciência Animal Brasileira, 15, 213-219. https://doi.org/10.1590/1809-6891v15i220309

Ramasamy, J. G. & Akkus, O. (2007). Local variations in the micromechanical properties of mouse femur: the involvement of collagen fiber orientation and mineralization. Journal of Biomechanichs, 40(4), 910-918. https://doi.org/10.1016/j.jbiomech.2006.03.002

Rho, J. Y.; Kuhn-Spearing, L. & Zioupos, P. (1998). Mechanical properties and the hierarchical structure of bone. Medical Engineering & Physics, 20, 92-102. https://doi.org/10.1016/S1350-4533(98)00007-1

Saha, S.; Martin, D. L. & Phillips, A. (1977). Elastic and strength properties of canine long bones. Medical & Biological Engineering & Computing, 15(1), 72-74. https://doi.org/10.1007/BF02441578

Salter, R. B. & Harris, W. R. (1963). Injuries Involving the Epiphyseal Plate. Journal of Bone and Joint Surgery, 45(3), 587–622.

Skedros, J. G.; Holmes, J. L.; Vajda, E. G. & Bloebaum, R. D. (2005). Cement lines of secondary osteons in human bone are not mineral‐deficient: New data in a historical perspective. Anatomical Record, 286(1), 781-803. https://doi.org/10.1002/ar.a.20214

Trapp, S. M.; Iacuzio, A. I.; Barca Junior, F. A.; Kemper, B.; Silva, L. C. da; Okano, W.; Tanaka, N. M.; Grecco, F. C. de A. R.; Cunha Filho, L. F. C. da; Sterza, F. A. M. (2010). Causas de óbito e razões para eutanásia em uma população hospitalar de cães e gatos. Brazilian Journal of Veterinary Research and Animal Science, 47(5), 395-402. https://doi.org/10.11606/issn.1678-4456.bjvras.2010.26821

Turner, C. H. & Burr, D. B. (1993). Basic biomechanical measurements of bone: a tutorial. Bone 14(4), 595-608. https://doi.org/10.1016/8756-3282(93)90081-K

Unger, M.; Montavon, P. M. & Heim, U. F. A. (1990). Classification of fractures of long bones in the dog and cat: introduction and clinical application. Veterinary and Comparative Orthopaedics and Traumatology, 3, 41-50. https://doi.org/10.1055/s-0038-1633228

Vashishth, D.; Behiri, J. C. & Bonfield, W. (1997). Crack growth resistance in cortical bone: concept of microcrack toughening. Journal of Biomechanics, 30(8), 763-769. https://doi.org/10.1016/S0021-9290(97)00029-8

Vashishth, D. (2004). Rising crack-growth-resistance behavior in cortical bone: implications for toughness measurements. Journal of Biomechics, 37(6), 943-946. https://doi.org/10.1016/j.jbiomech.2003.11.003

Vélez, J.; Ramírez, J. & Aristizábal, O. (2018). An anatomic description of intrinsic brachial muscles in the crab-eating fox (Cerdocyon thous, Linnaeus 1776) and report of a variant arterial distribution. Anatomia, Histologia, Embryolgia, 47(2), 180-183. https://doi.org/10.1111/ahe.12330

Wang, T. & Feng, Z. (2005). Dynamic mechanical properties of cortical bone: The effect of mineral content. Materials Letters, 59(18), 2277-2280. https://doi.org/10.1016/j.matlet.2004.08.048

Wang, X.; Shen, X.; Li, X. & Agrawal, C. M (2002). Age-related changes in the collagen network and toughness of bone. Bone 31, 1-7. https://doi.org/10.1016/S8756-3282(01)00697-4

Zadpoor, A. A. (2015). Mechanics of biological tissues and biomaterials: current trends. Materials, 8(7), 4505-4511. https://doi.org/10.3390/ma8074505

Zimmermann, E. A.; Launey, M. E.; Barth, H. D. & Ritchie, R. O. (2009). Mixed-mode fracture of human cortical bone. Biomaterials 30(29), 5877-5884. https://doi.org/10.1016/j.biomaterials.2009.06.017.

Descargas

Publicado

09/04/2022

Cómo citar

PASTOR, F. M.; RESENDE, G. de O.; ALVES, R. C.; NUNES, L. de C.; FRANCO, G. G. .; BOELONI, J. N.; SERAKIDES, R.; SILVA, M. A. da . Biomecánica del fémur y húmero del zorro cangrejero (Cerdocyon thous, Linnaeus 1776) en ensayos de flexión de tres puntos y compresión axial. Research, Society and Development, [S. l.], v. 11, n. 5, p. e34511528144, 2022. DOI: 10.33448/rsd-v11i5.28144. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/28144. Acesso em: 15 ene. 2025.

Número

Sección

Ciencias Agrarias y Biológicas