Efecto del pH y la temperatura sobre la producción de fitasa y biomasa por fermentación sumergida con Aspergillus niger var. Phoenicis URM 4924

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i6.28994

Palabras clave:

Aspergillus niger; Ergosterol; Fitasa; Fermentación sumergida.

Resumen

La producción de fitasa y biomasa (estimada por el contenido de ergosterol) por fermentación sumergida con Aspergillus niger var. phoenicis URM 4924 fue estudiado. Se realizaron ensayos experimentales en diferentes condiciones de pH (4,0 a 8,0) y temperatura (25 a 35 ºC), y se estudió la influencia de estas variables en las respuestas mediante un diseño estadístico compuesto y metodología de superficie de respuesta. La producción de fitasa y biomasa se vio afectada por el pH y la temperatura utilizados durante la fermentación. La actividad de fitasa aumentó hasta 7,8 veces (de 1,04 a 8,09 U/ml) y la concentración de ergosterol aumentó hasta 38 veces (de 9,3 a 354,09 µg/ml). Los valores máximos de ambas respuestas se alcanzaron a pH 4,0 y 30 ºC. Se encontró una buena correlación (ajuste de segundo orden, R2 = 0,9875) entre los datos obtenidos para la actividad de fitasa y el contenido de ergosterol, lo que sugiere que la producción de fitasa depende de la formación de biomasa. Estos resultados son interesantes, ya que contribuyen al desarrollo de un proceso industrial para la producción de fitasa con altos rendimientos por fermentación sumergida.

Citas

Alcazar-Fuoli, L., Mellado, E., Garcia-Effron, G., Lopez, J. F., Grimalt, J.O., Cuenca-Estrella, J. M., Rodriguez-Tudela, J. L. (2008). Ergosterol biosynthesis pathway in Aspergillus fumigatus. Steroids, 73(3), 339-347.

Al-Refai A. H. (1964). Physiological and biochemical studies on the metabolism of fats and sterols in fungi. Ph D Thesis Fac of Science Cairo Univ Egypt.

Augustine, A., Joseph, I., & Raj, R.P. (2006). Biomass estimation of Aspergillus niger S14 a mangrove fungal isolate and A. oryzae NCIM 1212 in solid-state fermentation. J. Mar. Biol. Ass. India, 48(2), 139-146.

Axelsson, B. O., Saraf, A., & Larsson, L. (1995). Determination of ergosterol in organic dust by gas chromatographyemass spectrometry. Journal of Chromatography B, 666, 77-84.

Bellí, N., Marín, S., Sanchis, V., & Ramos, A. J. (2004). Influence of water activity and temperature on growth of isolates of Aspergillus section Nigri obtained from grapes. Int. J. Food Microbiol, 96(1), 19-27.

Bermingham, S., Maltby, L., & Cooke, R. C. (1995). A critical assessment of the validity of ergosterol as an indicator of fungal biomass. Mycol. Res, 99(4), 479- 484.

Bindler, G. N., Piade, J. J., & Schulthess, D. (1988). Evaluation of selected steroids as chemical markers of past or presently occurring fungal infection on tobacco. Beitr. Tabakforsch. Int, 14(2), 127-134.

Carvalho, J. C., Pandey, A., Oishi, B. O., Brand, D., Rodriguez-León, J. A., & Soccol, C. R. (2006). Relation between growth, respirometric analysis and biopigments production from monascus by solid-state fermentation. Biochemical Engineering Journal, 29, 262–269.

Choi, Y. M., Suh, H. J., & Kim, J. M. (2001). Purification and properties of extracellular phytase from Bacillus sp. KHU-10. J. Protein Chem, 20(4), 287-292.

Desgranges, C., Vergoignan, C., Georges, M., & Durand, A. (1991). Biomass estimation in solid-state fermentation. I. Manual biochemical methods. Appl. Microbiol. Biotechnol, 35(2), 200-205.

Diarra, S. S., Usman, B. A., Igwebuike, J. U., & Yisa, A. G. (2010). Breeding for efficient phytate-phosphorus utilization by poultry. Int. J. Poult. Sci, 9(10), 923- 930.

Esmaeilipour, O., Van Krimpen, M. M., Jongbloed, A. W., de Jonge, L. H., & Bikker, P. (2012). Effects of temperature, pH, incubation time and pepsin concentration on the in vitro stability of intrinsic phytase of wheat, barley and rye. Anim. Feed Sci. Technol, 175(3-4), 168-174.

Evans, J. L. & Gealt, M. A. (1985). The sterols of growth and stationary phases of Aspergillus nidulans cultures. Journal of General Microbiology, 1: 131, 279.

Gargova, S. & Sariyska, M. (2003). Effect of culture conditions on the biosynthesis of Aspergillus niger phytase and acid phosphatase. Enzyme Microb. Technol, 32(2), 231-235.

Gessner, M. O. & Chauvet, E., (1997a). Growth and production of aquatic hyphomycetes in decomposing leaf litter. Limnol. Oceanogr, 42(3), 496-505.

Gessner, M. O. & Chauvet, E. (1997b). Ergosterol-to-biomass conversion factors for aquatic hyphomycetes. Applied Environmental Microbiology, 59:502– 507.

Ghanemi, K. M., Ghanemi, N. B. A., El-Refai, H., & Michalin, A. N. (1990). Utilization of beet molasse for sterol production by some moulds. Microbiología, 6, 37-44.

Gougouli, M. & Koutsoumanis, K. P. (2010). Modelling growth of Penicillium expansum and Aspergillus niger at constant and fluctuating temperature conditions. Int. J. Food Microbiol, 140(2-3), 254-262.

Gourama, H. & Bullerman, L. B. (1995a). Aspergillus flavus and Aspergillus parasiticus: Aflatoxigenic fungi of concern in foods and feeds: A review. J. Food Prot, 58(12), 1395-1404.

Gourama, H. & Bullerman, L. B. (1995b). Relationship between aflatoxin production and mold growth as measured by ergosterol and plate count. LWT – Food Sci. Technol, 28(2), 185-189.

Haefner, S., Knietsch, A., Scholten, E., Braun, J.; Lohscheidt, M.; & Zelder, O. (2005). Biotechnological Production and Applications of Phytases. Appl. Microbiol. Biotechnol, 68(5), 588-597.

Han, Y. W., Gallagher, D. J., & Wilfred, A. G. (1987). Phytase production by Aspergillus ficuum on semisolid substrate. J. Ind. Microbiol, 2(4), 195-200.

Heinonen, J. K. & Lathi, R. J. (1981). A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase. Anal. Biochem, 113(2), 313-317.

Khan, A. D., Ahmad, R., Salman, S., Shahzad, K., & Khaliq, A. (2004). Biosynthesis of fungal phytase from defatted rice polish. Pak. J. Food Sci, 14(1-2), 61-64.

Krishna, C. & Nokes, S. E. (2001). Influence of inoculum size on phytase production and growth in solid-state fermentation by Aspergillus niger. Trans. ASABE, 44(4), 1031-1036.

Leong, S.-L. L., Hocking, A. D., & Scott, E. S. (2006). Effect of temperature and water activity on growth and ochratoxin A production by Australian Aspergillus carbonarius and A. niger isolates on a simulated grape juice medium. Int. J. Food Microbiol, 110(3), 209-216.

Luo, H.-Y., Huang, H.-Q., Bai, Y.-G., Wang, Y.-R., Yang, P.-L., Meng, K., Yuan, T.-Z., & Yao, B. (2006). Improving phytase expression by increasing the gene copy number of appA-m in Pichia pastoris. Chin. J. Biotechnol, 22(4), 528-533.

Marín, S., Ramos, A. J., & Sanchis, V. (2005). Comparison of methods for the assessment of growth of food spoilage moulds in solid substrates. Int. J. Food Microbiol, 99(3), 329-341.

Marín, S., Sanchis, V., Sáenz, R., Ramos, A.J., Vinas, I., & Magan, N. (1998). Ecological determinants for germination and growth of some Aspergillus and

Penicillium spp. from maize grain. J. Appl. Microbiol, 84(1), 25-36.

Marlida, Y., Delfita, R., Adnadi, P., & Ciptaan, G. (2010). Isolation, characterization and production of phytase from endophytic fungus its application for feed. Pak. J. Nutr, 9(5), 471-474.

Mullaney, E. J., Daly, C. B., & Ullah, A. H. J. (2000). Advances in phytase research. Adv. Appl. Microbiol, 47, 157-199.

Mussatto, S. I., Ballesteros, L. F., Martins, S., & Teixeira, J. A. (2012). Use of agro-industrial wastes in solid-state fermentation processes, in: Show, K.-Y., Guo,

X. (Eds.), Industrial Waste. InTech - Open Access Publisher, Rijeka, Croatia, pp 121-140.

Naim, N., Saad, R., & Naim, M. S. (1985). Production of lipids and sterols by Fusarium oxysporum (Schlecht). Utilization of some agro-industrial by-products as additives and basal medium. Agricultural Wastes, 14:207.

Newell, S. Y. (1992). Estimating fungal biomass and productivity in decomposing litter, p. 521–561. In G. C. Carroll and D. T. Wicklow (ed.).

Newell, S. Y. (1996). The (14C) acetate-to-ergosterol method: Factors for conversion from acetate incorporated to organic fungal mass synthesized. Soil. Biol. Biochem, 28(4/5), 681–683.

Ng, H. E., Raj, S. S., Wong, S. H., Tey, D., & Tan, H.M. (2008). Estimativa de crescimento dos fungos utilizando o ensaio de ergosterol: uma ferramenta rápida em avaliar o estado microbiológico dos grãos e rações. Letters Applid Microbiology, 46(1) :113-118.

Nout, M. J. R., Bonants-van Laarhoven, T. M. G., de Jongh, P., & Koster, P. G. (1987). Ergosterol content of Rhizopus oligosporus NRRL 5905 grown in liquid and solid substrates, Applied Microbiology and Biotechnology, 26:456-461.

Olsson, J., Börjesson, T., Lundstedt, T., & Schnürer, J. (2002). Detection and quantification of ochratoxin A and deoxynivalenol in barley grains by GC–MS and electronic nose. Int. J. Food Microbiol, 72(3), 203-214.

Ooijkaas, L. P., Tramper, J., & Buitelaar, R. M. (1998). Biomass estimation of Coniothyrium minitans in solid-state fermentation. Enzyme Microb. Technol, 22(6), 480-486.

Osman, H. G., Mostafa, M. A., & El-Refai, A. H. (1969). Production of lipid and sterol by Aspergillus fumigatus. I. Culture conditions favouring the formation of lipids and sterols. Journal of Chemistry of the UAR, 12(2):185.

Pandey, A., Szakacs, G., Soccol, C.R., Rodriguez-Leon, J.A., Soccol, V.T. (2001). Production, purification and properties of microbial phytases. Bioresource Technol, 77(3), 203-214.

Parra, R. & Magan, N. (2004). Modelling the effect of temperature and water activity on growth of Aspergillus niger strains and applications for food spoilage moulds. J. Appl. Microbiol, 97(2), 429-438.

Pasanen, A., Yli-Pietila, K., Pasanen, P., Pentti, K., & Tarhanen, J. (1999). Ergosterol content in various fungal species and biocontaminated building materials fungal community, 2nd ed. Marcel Dekker, Inc., New York, N.Y. Applied and Environmental Microbiology, p. 138–142.

Pitt, J. I. & Hocking, A. D. (1997). Aspergillus and related teleomorphs, in: Pitt, J.I., Hocking, A.D. (Eds.) Fungi and Food Spoilage. Blackie Academic and Professional, London, United Kingdom, pp, 339–416.

Reeslev, M. & Kjoller, A. (1995). Comparison of biomass dry weights and radial growth rates of fungal colonies on media solidified with different gelling compounds. Applied and Environmental Microbiology, 61, 4236– 4239.

Reeslev, M., Miller, M., & Nielsen, K.F. (2003). Quantifying mold biomass on gypsum board: comparison of ergosterol and beta- N-acetylhexosaminidase as mold biomass parameters. Applied and Environmental Microbiology, 69, 3996– 3998.

Ruppol, E. (1949). Some constituents of Penicillium notatum. Journal de Pharmacie de Belgique, (U.S) 4:59.

Saxena, J., Munimbazi, C., & Bullerman, L. B. (2001). Relationship of mould count, ergosterol and ochratoxin A production. Int. J. Food Microbiol, 71(1), 29-34.

Schwadorf, K. & Muller, H. M. (1989). Determination of ergosterol in cereals, mixed feed components, and mixed feeds by liquid chromatography. J. AOAC Int, 72(3), 457-462.

Schnürer, J. (1993). Comparison of methods for estimating the biomass of three food-borne fungi with different growth patterns. Applied Environmental Microbiology, 59:552-555.

Shah, P., Bhavsar, K., Soni, S. K., & Khire, M. J. (2009). Strain improvement and up scaling of phytase production by Aspergillus niger NCIM 563 under submerged fermentation conditions. J. Ind. Microbiol. Biotechnol, 36(3), 373-380.

Shapiro, B. E. & Geatl, M. A. (1982). Ergosterol and lanosterol from Aspergillus nidulans. Journal of General Microbiology, 128:1053.

Soni, S. K. & Khire, J. M. (2007). Production and partial characterization of two types of phytase from Aspergillus niger NCIM 563 under submerged fermentation conditions. World J. Microbiol. Biotechnol, 23(11), 1585-1593.

Spier, M. R., Fendrich, R. C., Almeida, Noseda, M., Greiner, R., Konietzny, U., Woiciechowski, A. L., Soccol,, C. R. (2011). Phytase produced on citric byproducts: purification and characterization. World J. Microbiol. Biotechnol, 27(2), 267-274.

Spier, M. R., Scheidt, G. N., Portella, A. C., Rodríguez-León, J. A., Woiciechowski, A. L., & Greiner, R. C. (2010). Incease in phytase synthesis during citric pulp fermentation. Chemical Engineering Communications, 198 (2).

Spier, M. R., Letti, L. A. J., Woiciechowski, A. L., & Soccol, C. R. (2009). A simplified model for A. niger FS3 growth during phytase formation in solid state fermentation. Braz. Arch. Biol. Technol, 52, 151-158.

Taniwaki, M. H., Pitt, J. I., Hocking, A. D., & Fleet, G. H. (2006). Comparison of hyphal length, ergosterol, mycelium dry weight, and colony diameter for quantifying growth of fungi from foods. Adv. Exp. Med. Biol, 571, 49-67.

Torres, M., Viladrich, R., Sanchis, V., & Canela, R. (1992). Influence of age on ergosterol content in mycelium of Aspergillus ochraceus. Lett. Appl. Microbiol, 15(1), 20-22.

Vacheron, M. J. & Michel, G. (1968). Composition en sterols et en acides gras de deux souches d’Aspergillus flavus, Phytochemistry, 7:1645-1651.

Vats, P. & Banerjee, U. C. (2002). Studies on the production of phytase by a newly isolated strain of Aspergillus niger var teigham obtained from rotten wood- logs. Process. Biochem, 38(2), 211-217.

Vats, P. & Banerjee, U. C. (2004). Production studies and catalytic properties of phytases (myo-inositolhexakisphosphate phosphohydrolases): An overview. Enzyme Microb. Technol, 35(1), 3-14.

Vohra, A. & Satyanarayana, T. (2003). Phytases: Microbial sources, production, purification, and potential biotechnological applications. Crit. Rev. Biotechnol, 23(1), 29-60.

Weete, J. D. (1973). Sterols of fungi: distribution and biosynthesis, Phytochemistry, 12:1843-1864.

White, P. & Johnson, L. A. (2003). Corn: Chemistry and Technology, (2a ed.), American Association of Cereal Chemists, USA.

Zhang, G.Q., Dong, X. F., Wang, Z. H., Zhang, Q., Wang, H. X., & Tong, J. M. (2010). Purification, characterization, and cloning of a novel phytase with low ph optimum and strong proteolysis resistance from aspergillus ficuum ntg-23. Bioresource Technol, 101(11), 4125-4131.

Zheng, W. F., Liu, T., Xiang, X. Y., & Gu, Q. (2007). Sterol composition in field-grown and culture mycelia of Inonotus obliquus. Acta Pharm. Sin, 42(7), 750- 756.

Descargas

Publicado

13/05/2022

Cómo citar

NASCIMENTO, J. C. dos S.; RIBEIRO, A. G. .; PESSOA, R. A. S. .; RABELLO, C. B. V. .; VENÂNCIO, A. .; PORTO, T. S. .; TEIXEIRA, J. A. C. .; PORTO, A. L. F. . Efecto del pH y la temperatura sobre la producción de fitasa y biomasa por fermentación sumergida con Aspergillus niger var. Phoenicis URM 4924. Research, Society and Development, [S. l.], v. 11, n. 6, p. e41311628994, 2022. DOI: 10.33448/rsd-v11i6.28994. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/28994. Acesso em: 23 nov. 2024.

Número

Sección

Ciencias Agrarias y Biológicas