Perfil de resistencia antimicrobiana de Salmonella spp. aislados de productos animales no comestibles en mataderos frigoríficos.

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i9.30185

Palabras clave:

Salmonelosis; Salud única; Seguridad alimenticia; Control de infección; Tecnología de los Alimentos.

Resumen

La harina de origen animal es el subproducto no comestible resultante del procesamiento de los desechos del sacrificio de animales de carnicería, no destinados al consumo humano. Además de aprovechar los residuos, este proceso tiene como objetivo reducir el daño ambiental. Sin embargo, durante alguna etapa del proceso de su elaboración, la contaminación por microorganismos resistentes a los antimicrobianos como Salmonella spp. que, al servir de alimento a estos animales, pueden propagar patógenos en las granjas provocando la infección de los rebaños, además de causar un impacto negativo directo en el rendimiento productivo de las aves, así como un riesgo para la salud del consumidor a través de el consumo de productos avícolas. Por lo tanto, el objetivo del presente estudio fue investigar el perfil de resistencia antimicrobiana en Salmonella spp. aislado de harina animal no comestible utilizada en la formulación de raciones y también de raciones producidas a partir de estos subproductos animales no comestibles en mataderos ubicados en Bahía y Pernambuco (Brasil). A partir de pruebas bioquímicas para aislamiento e identificación de Salmonella spp. Se seleccionaron aleatoriamente 81 aislamientos para someterlos a pruebas de susceptibilidad antimicrobiana mediante el método de difusión en placa. La mayoría de los aislados fueron sensibles a los antimicrobianos probados. Entre los antimicrobianos que resultaron resistentes, el ácido nalidíxico presentó el mayor porcentaje, que es uno de los antimicrobianos utilizados en el tratamiento de la salmonelosis. La cadena de producción de alimentos de origen animal puede desempeñar un papel en la propagación de cepas resistentes. Por lo tanto, es preocupante el desarrollo de resistencia antimicrobiana en microorganismos transmitidos por alimentos.

Citas

Ahmed, H. A., El-Hofy, F. I., Shafik, S. M., Abdelrahman, M. A., & Elsaid, G. A. (2016). Characterization of virulence-associated genes, antimicrobial resistance genes, and class 1 integrons in Salmonella enterica serovar Typhimurium isolates from chicken meat and humans in Egypt. Foodborne pathogens and disease, 13(6), 281-288. https://doi/ 10.1089/fpd.2015.2097

Alam, M. U., Rahman, M., Islam, M. A., Asaduzzaman, M., Sarker, S., Rousham, E., & Unicomb, L. (2019). Human exposure to antimicrobial resistance from poultry production: assessing hygiene and waste-disposal practices in Bangladesh. International Journal of Hygiene and Environmental Health, 222(8), 1068-1076. https://doi/10.1016/j.ijheh.2019.07.007

Alao, B. O., Falowo, A. B., Chulayo, A., & Muchenje, V. (2017). The potential of animal by-products in food systems: Production, prospects and challenges. Sustainability, 9(7), 1089. https://doi/10.3390/su9071089

Andino, A., & Hanning, I. (2015). Salmonella enterica: survival, colonization, and virulence differences among serovars. The Scientific World Journal, 2015. http://dx.doi.org/10.1155/2015/520179

Antonio, N. D. S., Oliveira, A. C., Canesini, R., Rocha, J. R., & Pereira, R. E. P. (2009). Mecanismos de resistência bacteriana. Rev. Cient. Elet. Med. Vet, 200(2), 4.

Antunes, P., Mourão, J., Campos, J., & Peixe, L. (2016). Salmonellosis: the role of poultry meat. Clinical microbiology and infection, 22(2), 110-121. http://dx.doi.org/10.1016/j.cmi.2015.12.004

Asfaw Ali, D., Tadesse, B., & Ebabu, A. (2020). Prevalence and antibiotic resistance pattern of Salmonella isolated from caecal contents of exotic chicken in Debre Zeit and Modjo, Ethiopia. International Journal of Microbiology, 2020. https://doi.org/10.1155/2020/1910630

Bada-Alambedji, R., Fofana, A., Seydi, M., & Akakpo, A. J. (2006). Antimicrobial resistance of Salmonella isolated from poultry carcasses in Dakar (Senegal). Brazilian Journal of Microbiology, 37(4), 510-515.

Bauer, A. W. (1966). Antibiotic susceptibility testing by a standardized single disc method. Am J clin pathol, 45, 149-158.

Borges, K. A., Furian, T. Q., Souza, S. N. D., Salle, C. T. P., Moraes, H. L. D. S., & Nascimento, V. P. D. (2019). Antimicrobial resistance and molecular characterization of Salmonella enterica serotypes isolated from poultry sources in Brazil. Brazilian Journal of Poultry Science, 21 (1), 001-008. http://dx.doi.org/10.1590/1806-9061-2018-0827

Brasil. (2007). Ministério da Saúde. Agência Nacional de Vigilância Sanitária. Antimicrobianos:bases teóricas e uso clínico. Retrieved May 10, 2019, from: <http://www.anvisa.gov.br/servicosaude/controle/rede_rm/cursos/rm_controle/opas_web/modulo1/antimicrobianos.htm>.

Brasil. Ministério da Saúde Pecuária e Abastecimento. (2021). Programa de Vigilância e Monitoramento da Resistência aos Antimicrobianos no Âmbito da Agropecuária (2019-2022). Retrieved May 21, 2022, from: https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/insumos-pecuarios/resistencia-aos-antimicrobianos/pan-br-agro/ProgramadeVigilnciaeMonitoramentoAMRFINAL5.pdf

Chen, H. M., Wang, Y., Su, L. H., & Chiu, C. H. (2013). Nontyphoid Salmonella infection: microbiology, clinical features, and antimicrobial therapy. Pediatrics & Neonatology, 54(3), 147-152. http://dx.doi.org/10.1016/j.pedneo.2013.01.010

Clinical and Laboratory Standards Institute. 2020. Performance standards for antimicrobial disk susceptibility testing: Fourteenth informational supplement. CLSI document M02-M07, M11, ed. 30, 332p. Clinical And Laboratory Standards Institute, Wayne, PA.

Da Silva, N., Junqueira, V. C. A., de Arruda Silveira, N. F., Taniwaki, M. H., Gomes, R. A. R., & Okazaki, M. M. (2017). Manual de métodos de análise microbiológica de alimentos e água (5th ed.). Blucher.

De Souza, R. B., Magnani, M., & de Oliveira, T. C. R. M. (2010). Mecanismos de resistência às quinolonas em Salmonella spp. Semina: Ciências Agrárias, 31(2), 413-427.

Duarte, D. A. M., Ribeiro, A. R., Vasconcelos, A. M. M., Santos, S. B., Silva, J. V. D., Andrade, P. L. A. D., & Falcão, L. S. P. D. C. D. A. (2009). Occurrence of Salmonella spp. in broiler chicken carcasses and their susceptibility to antimicrobial agents. Brazilian Journal of Microbiology, 40(3), 569-573.

European Food Safety Authority. (2014). The European Union Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents and Food-borne Outbreaks in 2012. EFSA Journal. 12(2), 35-47.

Evangelopoulou, G., Kritas, S., Govaris, A., & Burriel, A. R. (2013). Animal salmonelloses: a brief review of? host adaptation and host specificity? of Salmonella spp. Veterinary World, 6(10), 703.

Fayemi, P. O., Muchenje, V., Yetim, H., & Ahhmed, A. (2018). Targeting the pains of food insecurity and malnutrition among internally displaced persons with nutrient synergy and analgesics in organ meat. Food Research International, 104, 48-58. https://doi.org/10.1016/j.foodres.2016.11.038

Folster, J. P., Pecic, G., Bolcen, S., Theobald, L., Hise, K., Carattoli, A.; Whichard, J. M. (2010). Characterization of extended-spectrum cephalosporin–resistant Salmonella enterica serovar heidelberg isolated from humans in the United States. Foodborne Pathogens and Disease, 7(2), 181-187. https://doi.org/10.1089/fpd.2009.0376

Folster, J. P., Pecic, G., Singh, A., Duval, B., Rickert, R., Ayers, S.; Abbott, J. Mcglinchey, B.; Bauer-Turpin, J.; Haro, J.; Hise, K; Zhao, S.; Fedorka-Cray, P. J.; Whichard, J.; Mcdermot, P.F. (2012). Characterization of extended-spectrum cephalosporin–resistant Salmonella enterica serovar Heidelberg isolated from food animals, retail meat, and humans in the United States 2009. Foodborne Pathogens and Disease, 9(7), 638-645. https://doi.org/doi:10.1089/fpd.2012.1130

Folster, J. P., Tolar, B., Pecic, G., Sheehan, D., Rickert, R., Hise, K., Zhao, S.; Fedorka-Cray, P. J.; Mcdermott, P. Whichard, J. M. (2014). Characterization of bla CMY plasmids and their possible role in source attribution of Salmonella enterica serotype Typhimurium infections. Foodborne pathogens and disease, 11(4), 301-306. https://doi.org/10.1089/fpd.2013.1670

Frye, J. G., & Jackson, C. R. (2013). Genetic mechanisms of antimicrobial resistance identified in Salmonella enterica, Escherichia coli, and Enteroccocus spp. isolated from US food animals. Frontiers in microbiology, 4, 135. https://doi.org/10.3389/fmicb.2013.00135~

Gebreyes, W. A., & Thakur, S. (2005). Multidrug-resistant Salmonella enterica serovar Muenchen from pigs and humans and potential interserovar transfer of antimicrobial resistance. Antimicrobial Agents and Chemotherapy, 49(2), 503-511. https://doi.org/10.1128/AAC.49.2.503-511.2005

Guimarães, D. O., Momesso, L. D. S., & Pupo, M. T. (2010). Antibióticos: importância terapêutica e perspectivas para a descoberta e desenvolvimento de novos agentes. Química Nova, 33, 667-679.

Helms, M., Evans, S., Vastrup, P., & Gerner-Smidt, P. (2003). Short and long term mortality associated with foodborne bacterial gastrointestinal infections: registry based studyCommentary: matched cohorts can be useful. Bmj, 326(7385), 357.

Helms, M., Simonsen, J.,& Mølbak, K. (2006). Foodborne bacterial infection and hospitalization: a registry-based study. Clinical Infectious Diseases, 42(4), 498-506. https://doi.org/10.1086/499813

Hooper, D. C. (2001). Emerging mechanisms of fluoroquinolone resistance. Emerging infectious diseases, 7(2), 337. https://doi.org/10.3201/eid0702.010239

Hooper, D. C., & Jacoby, G. A. (2015). Mechanisms of drug resistance: quinolone resistance. Annals of the New York academy of sciences, 1354(1), 12-31. https://doi.org/10.1111/nyas.12830

Hunter, J. C.; Francois Watkins, L. K. (2017). Salmonellosis (Nontyphoidal). Chapter 3 Infectious Diseases Related to Travel. June 12, 2017: Centers for Disease Control and Prevention. Retrieved January 22, 2019, from: https://wwwnc.cdc.gov/travel/yellowbook/2018/infectious-diseases-related-to-travel/salmonellosis-nontyphoidal.

Jayathilakan, K., Sultana, K., Radhakrishna, K., & Bawa, A. S. (2012). Utilization of byproducts and waste materials from meat, poultry and fish processing industries: a review. Journal of food science and technology, 49(3), 278-293. https://doi.org/10.1007/s13197-011-0290-7

Khojasteh, F., Hosseinzadeh, S., Fazeli, M., & Poormontaseri, M. (2018). Determination of tetracycline and enrofloxacine resistance in salmonella isolated from poultry. International Journal of Nutrition Sciences, 3(1), 38-43.

Liljebjelke, K. A., Hofacre, C. L., White, D. G., Ayers, S., Lee, M. D., & Maurer, J. J. (2017). Diversity of antimicrobial resistance phenotypes in Salmonella isolated from commercial poultry farms. Frontiers in veterinary science, 4, 96. https://doi.org/10.3389/fvets.2017.00096

Liu, S., Tang, J., Tadapaneni, R. K., Yang, R., & Zhu, M. J. (2018). Exponentially increased thermal resistance of Salmonella spp. and Enterococcus faecium at reduced water activity. Applied and Environmental Microbiology, 84(8), e02742-17. https://doi.org/10.1128/AEM.02742-17

Malav, O. P., Birla, R., Virk, K. S., Sandhu, H. S., Mehta, N., Kumar, P., & Wagh, R. V. (2018). Safe disposal of slaughterhouse waste: Mini review. https://doi.org/10.31031/APDV.2018.02.000542

Marshall, B. M., & Levy, S. B. (2011). Food animals and antimicrobials: impacts on human health. Clinical microbiology reviews, 24(4), 718-733. https://doi.org/doi:10.1128/CMR.00002-11

Mathi, P., Kunyanga, C., Gichure, J. N., & Imungi, J. K. (2016). Utilization of beef slaughter by-products among the Kenyan pastoral communities. Food Science and Quality Management, 53, 78-83.

Mølbak, K. (2004). Spread of resistant bacteria and resistance genes from animals to humans–the public health consequences. Journal of Veterinary Medicine, Series B, 51(8‐9), 364-369. https://doi.org/doi: 10.1111/j.1439-0450.2004.00788.x

Morente, E. O., Fernández-Fuentes, M. A., Burgos, M. J. G., Abriouel, H., Pulido, R. P., & Gálvez, A. (2013). Biocide tolerance in bacteria. International journal of food microbiology, 162(1), 13-25. https://doi.org/10.1016/j.ijfoodmicro.2012.12.028

Mota, R. A., da Silva, K. P. C., de Freitas, M. F. L., Porto, W. J. N., & da Silva, L. B. G. (2005). Utilização indiscriminada de antimicrobianos e sua contribuição a multirresitência bacteriana. Brazilian Journal of Veterinary Research and Animal Science, 42(6), 465-470.

Okanović, Đ., Ristić, M., Kormanjoš, Š., Filipović, S., & Živković, B. (2009). Chemical characteristics of poultry slaughterhouse byproducts. Biotechnology in Animal Husbandry, 25(1-2), 143-152.

Pacheco, J. W. (2006). Guia técnico ambiental de graxarias. São Paulo: CETESB. Retrieved March 29, 2019, from http://www.cetesb.sp.gov.br.

Pal, M., Merera, O., Abera, F., Rahman, M. T., & Hazarika, R. A. (2015). Salmonellosis: A major foodborne disease of global significance. Beverage Food World, 42(12), 21-24.

Pandini, J. A., Pinto, F. G. D. S., Muller, J. M., Weber, L. D., & Moura, A. C. D. (2015). Ocorrência e perfil de resistência antimicrobiana de sorotipos de Salmonella spp. isolados de aviários do Paraná, Brasil. Arquivos do Instituto Biológico, 82, 1-6. https://doi.org/10.1590/1808-1657000352013

Pardi, M. C., dos Santos, I. F., de Souza, E. R., & Pardi, H. S. (2007). Ciência, higiene e tecnologia da carne. CEGRAF-UFG.

Pitout, J. D., & Laupland, K. B. (2008). Extended-spectrum β-lactamase-producing Enterobacteriaceae: an emerging public-health concern. The Lancet infectious diseases, 8(3), 159-166. https://doi.org/10.1016/S1473-3099(08)70041-0

Robles-Jimenez, L. E., Aranda-Aguirre, E., Castelan-Ortega, O. A., Shettino-Bermudez, B. S., Ortiz-Salinas, R., Miranda, M., Li, X., Angeles-Hernandez, J. C. Vargas-Bello-Pérez,E. & Gonzalez-Ronquillo, M. (2021). Worldwide traceability of antibiotic residues from livestock in wastewater and soil: A systematic review. Animals, 12(1), 60. https://doi.org/10.3390/ani12010060

Rodrigues-Silva, C., Maniero, M. G., Peres, M. S., & Guimarães, J. R. (2014). Ocorrência e degradação de quinolonas por processos oxidativos avançados. Química Nova, 37(5), 868-885. https://doi.org/10.5935/0100-4042.20140139

Salim, H. M., Huque, K. S., Kamaruddin, K. M., & Haque Beg, A. (2018). Global restriction of using antibiotic growth promoters and alternative strategies in poultry production. Science progress, 101(1), 52-75. https://doi.org/10.3184/003685018X15173975498947

Sánchez‐Salazar, E., Gudiño, M. E., Sevillano, G., Zurita, J., Guerrero‐López, R., Jaramillo, K., & Calero‐Cáceres, W. (2019). Antibiotic resistance of Salmonella strains from layer poultry farms in central Ecuador. Journal of applied microbiology, 128(5), 1347-1354. https://doi.org/10.1111/jam.14562

SAS, S., & Guide, S. U. S. (2004). Version 9.1, Volumes 1-7. SAS Institute Inc., Cary, NC, USA.

Singh, V. (2013). Salmonella serovars and their host specificity. J. Vet. Sci. Anim. Husb, 1(3):301, 10-15744. https://doi.org/10.15744/2348-9790.1.301

Silva, F. F. P. D., Horvath, M. B., Silveira, J. G., Pieta, L., & Tondo, E. C. (2014). Occurrence of Salmonella spp. and generic Escherichia coli on beef carcasses sampled at a brazilian slaughterhouse. Brazilian Journal of Microbiology, 45(1), 17-24.

Tegegne, F. M. (2019). Epidemiology of Salmonella and its serotypes in human, food animals, foods of animal origin, animal feed and environment. J Food Nutr Health, 2 (1), 7-14.

Thyagarajan, D., Barathi, M., & Sakthivadivu, R. (2013). Scope of poultry waste utilization. IOSR J Agric Vet Sci, 6(5), 29-35.

United States Food and Drug Administration. FDA (2019). Releases 2016-2017 NARMS Integrated Summary, Streamlines report Format. Silver Spring, MD: U.S. Food and Drug Administration. Retrieved April 20, 2020, from: https://www.fda.gov/animal-veterinary/cvm-updates/fda-releases-2016-2017-narms-integrated-summary-streamlines-reporting-format.

Uzzau, S., Brown, D. J., Wallis, T., Rubino, S., Leori, G., Bernard, S., Casadesús, J., Platt, D. J., & Olsen, J. E. (2000). Host adapted serotypes of Salmonella enterica. Epidemiology & Infection, 125(2), 229-255. https://doi.org/10.1017/s0950268899004379

Van Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S. A., Robinson, T. P., Teillanta, A., & Laxminarayan, R. (2015). Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences, 112(18), 5649-5654. https://doi.org/10.1073/pnas.1503141112

World Health Organization. (2012). Antimicrobial Resistance. Fact sheet 194. Retrieved May 20, 2017 from: <http://www.who.int/mediacentre/factsheetfs194/en/>.

World Health Organization. (2017). Guidelines on use of medically important antimicrobials in food-producing animal. Retrieved March, 11, 2020, from: https://apps.who.int/iris/bitstream/handle/10665/258970/9789241550130-eng.pdf?sequence=1.

World health organization. (2020). Antibiotic resistance. Retrieved January 22, 2022, from: https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance.

Yates, C. M., Pearce, M. C., Woolhouse, M. E. J.,& Amyes, S. G. B. (2004). High frequency transfer and horizontal spread of apramycin resistance in calf faecal Escherichia coli. Journal of Antimicrobial Chemotherapy, 54(2), 534-537. https://doi.org/10.1093/jac/dkh353

Descargas

Publicado

15/07/2022

Cómo citar

COSTA, W. L. R.; SILVA, R. A. R. da .; SANTOS, E. T. S. R. dos .; LEAL NETO, A. F.; SILVA, M. M. N. .; FERNANDES, L. M. B. .; NASCIMENTO, E. R. do . Perfil de resistencia antimicrobiana de Salmonella spp. aislados de productos animales no comestibles en mataderos frigoríficos. Research, Society and Development, [S. l.], v. 11, n. 9, p. e46311930185, 2022. DOI: 10.33448/rsd-v11i9.30185. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/30185. Acesso em: 1 jul. 2024.

Número

Sección

Ciencias de la salud