Modelado y desarrollo de una planta didáctica a bajo costo para la enseñanza en sistemas multivariables

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i7.30249

Palabras clave:

Sistema multivariable de cuatro tanques; Laboratorio de control y sistemas dinámicos; Planta didáctica a bajo costo; Enseñanza de ingeniería.

Resumen

Este trabajo tiene como objetivo planificar, construir y modelar una planta de nivel multivariable de bajo costo para ser utilizada con fines didácticos. El modelo desarrollado cuenta con dos bombas que alimentan cuatro tanques acoplados entre sí. Entre los tanques y las bombas hay válvulas de entrada y salida que pueden cambiar la dinámica del sistema según su configuración de apertura. Para automatizar las bombas y leer la instrumentación utilizada se optó por el microcontrolador Arduino, el cual es un modelo de gran utilidad en el ámbito académico y de fácil parametrización. Para la detección se eligió el sensor ultrasónico HC-SR04, que ya tiene compatibilidad nativa con el microcontrolador. Para validar la planta construida fue necesario identificar su modelo utilizando el método empírico de respuesta escalonada para tal fin. De esta forma, este trabajo tiene características tanto cualitativas como cuantitativas, ya que la planificación y construcción de la planta didáctica implicó una investigación exploratoria del problema y luego se aplicó el método de modelado y simulación para obtener el modelo matemático de la planta. Finalmente, se realizó una investigación experimental, comparando los datos obtenidos en la planta real con los datos del modelo para su validación. Después de completar todas las etapas de la investigación, el resultado del trabajo es un plan didáctico con buena linealidad, capaz de proporcionar la implementación de estrategias de control de nivel de tanques acoplados y ayudar en la enseñanza y aprendizaje de temas que involucren conceptos de sistemas dinámicos, identificación y control de sistemas multivariables.

Biografía del autor/a

Luiz Felipe Pugliese, Universidade Federal de Itajubá

Graduado en Ingeniería en Control y Automatización por la Universidad Federal de Itajubá (UNIFEI). Maestría (2015) y Doctorado (2019) en Ingeniería Eléctrica con énfasis en Automatización y Sistemas Eléctricos Industriales de la Universidad Federal de Itajubá. Profesor de la Universidad Federal de Itajubá, campus Itabira. Investigador del Grupo de Investigación en Sistemas Dinámicos (GPDIN).

Tiago Gaiba de Oliveira, Universidade Federal de Itajubá

He holds a degree in Electrical Engineering from the Centro Universitário do Leste de Minas Gerais (2012), a master's degree in Modeling and Control of Systems from the Federal Center for Technological Education of Minas Gerais (2015) and a PhD in Electrical Engineering from the Federal University of Minas Gerais (2018) . He is currently Journal Reviewer at IET CONTROL THEORY & APPLICATIONS (ONLINE), Journal Reviewer at IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS and Adjunct Professor A1 at the Federal University of Itajubá, Campus Itabira. He has experience in the field of Electrical Engineering, with an emphasis on Industrial Electronics, Electronic Systems and Controls. Acting mainly on the following topics: Synthesis, Controllers, Non-linear, Network.

Diogo Leonardo Ferreira da Silva, Universidade Federal de Itajubá

He holds a degree in Control and Automation Engineering (2010) from the Federal University of Itajubá and a Master's degree in Electrical Engineering (2013) from the same institution. He completed his PhD in Electrical Engineering at the Federal University of Itajubá, having completed a sandwich period at the University of Tennessee in the USA. He did a Post-Doctorate in Computer Engineering at the Federal University of Itajubá in 2017. He is currently an adjunct professor in the areas of analog and digital electronics at the Federal University of Itajubá-Campus Itabira. His main areas of interest are: Control systems, automation and process control, artificial intelligence, digital systems and electronic circuits. In administrative activities, he was coordinator of the course conclusion work, coordinator of the control and automation engineering course in addition to having participated in several committees and being a counselor of CONSUNI.

Fadul Ferrari Rodor, Universidade Federal de Itajubá

He holds a degree in Control and Automation Engineering from the Federal University of Itajubá (2009), a Master's degree in Electrical Engineering from the Federal University of Itajubá (2012) and a PhD in Electrical Engineering from the Federal University of Itajubá (2017). He is currently an Adjunct Professor at the Federal University of Itajubá. He has experience in the field of Electrical Engineering, with an emphasis on Industrial Electronics, Electronic Systems and Controls.

Rodrigo Aparecido da Silva Braga, Universidade Federal de Itajubá

He holds a degree in Computer Engineering from the Federal University of Itajubá (2004) and a Master's degree in Electrical Engineering with an emphasis on Electrical Systems for Industrial Automation from the Federal University of Itajubá (2007) and a PhD in Electrical Engineering with an emphasis on Microelectronics from the Federal University of Itajubá (2018). He has experience in software engineering, computer networks, electronics and embedded systems. He is currently an Adjunct Professor-Level C3 at the Federal University of Itajubá-Campus Itabira.

Gabriela Fonseca Amorim, Universidade Federal de Itajubá

She holds a PhD in Production Engineering from Unifei (2018), a Master's degree in Production Engineering from Unifei (2014) and a degree in Control and Automation Engineering from Unifei (2011). She worked as a research scholar at the University of Tennessee at Knoxville - United States between 2015 and 2016 for the Science without Borders program and did an internship at the Laboratoire Heudiasyc at the Center de Recherches da Université de Technologie de Compiègne - France in 2009. She was elected graduate student representative in Production Engineering (2013-2015) and a degree in Control and Automation Engineering (CAECA 2007-2008; Student Representative on the Board 2010-2011). She worked as a volunteer writing teacher at Theotokos and CAAI assistance courses, and as a French and Portuguese teacher for foreigners at the Speaking language school. She is currently a professor at the Institute of Pure and Applied Sciences (ICPA) at Unifei - Itabira campus, Adjunct Coordinator of the undergraduate course in Health and Safety Engineering, Extension Coordinator of the Itabira Campus and Advisor Professor of the extension project "Engineers Without Borders - Itabira Center".

Citas

Alves, L. F., Brandão, D. & Oliveira, M. A. (2019). A multi-process pilot plant as a didactical tool for the teaching of industrial processes control in electrical engineering course. The International Journal of Electrical Engineering & Education, 56(1), 62-91.

Åström, K. J. & Hägglund, T. (1995). PID controllers: theory, design, and tuning. ISA-The Instrumentation, Systems and Automation Society.

Beccaro, W., dos Santos, R. B., Peres, H. E. & Justo, J. F. (2022). Low-cost didactic platform for real-time adaptive filtering: Application on noise cancellation. The International Journal of Electrical Engineering & Education, 59(2), 141-157.

de Pádua, E. M. M. (2019). Metodologia da pesquisa: abordagem teórico-prática. Papirus Editora.

de Paiva, M. R. P., Fagundes, G. F. & Cavallaro, R. J. (2020). Projeto de bancada didática para determinar perda de carga em tubulação e conexões. Research, Society and Development, 9(10), e8289109127-e8289109127.

Efstratia, D. (2014). Experiential education through project based learning. Procedia-social and behavioral sciences, 152, 1256-1260.

Feisel, L. D. & Rosa, A. J. (2005). The role of the laboratory in undergraduate engineering education. Journal of engineering Education, 94(1), 121-130.

Gosmann, H. L. (2002). Um sistema Multivariável de tanques acoplados para avaliação de técnicas de controle. Brasília: Dissertação (Mestrado)–Universidade de Brasília.

Guzman-Ramirez, E., Garcia, I., Guerrero, E. & Pacheco, C. (2015). An educational tool for designing DC motor control systems through FPGA-based experimentation. International Journal of Electrical Engineering Education, 52(1), 22-38.

Innovations, Power (2022). TIP3055 NPN Silicon power transistor. https://www.st.com/resource/en/datasheet/tip2955.pdf.

Jones, W. V. (2013). Motor selection made easy: Choosing the right motor for centrifugal pump applications. IEEE Industry Applications Magazine, 19(6), 36-45.

Köche, J. C. (2016). Fundamentos de metodologia científica. Editora Vozes.

Kokotsaki, D., Menzies, V. & Wiggins, A. (2016). Project-based learning: A review of the literature. Improving schools, 19(3), 267-277.

Ljung, L. (1999). System identification: theory for the user. PTR Prentice Hall, Upper Saddle River, NJ, 28, 540.

Morgan, E. J. (2014). HC-SR04 ultrasonic sensor.

Ogata, K. (2010). Modern control engineering (Vol. 5). Upper Saddle River, NJ: Prentice hall.

Özerdem, Ö. C. (2016). Design of two experimental setups for programmable logic controller (PLC) laboratory. International Journal of Electrical Engineering Education, 53(4), 331-340.

Pereira, C. E., Paladini, S. & Schaf, F. M. (2012). Control and automation engineering education: Combining physical, remote and virtual labs. In International Multi-Conference on Systems, Signals & Devices (pp. 1-10). IEEE.

Petru, L. & Mazen, G. (2015). PWM control of a DC motor used to drive a conveyor belt. Procedia Engineering, 100, 299-304.

Pinho, A. G., Olímpio, E. J. S., Cabral, L. M., de Oliveira Filho, R. M., Silva, B. C. R., Furriel, G. P. & de Melo Junior, G. (2021). Desenvolvimento de bancada didática contendo múltiplos sensores e atuadores. Research, Society and Development, 10(13), e222101321165-e222101321165.

Rhondamaq (2022). High Pressure Water Pump 12V 36W 110 PSI. www.rhondamaq.com.br/bomba-dagua-alta-pressao-12v-30w.

Sanchez, B. & Bragos, R. (2007). Modular workbench for in‐situ and remote laboratories, Instrumentation and Measurement Technology Conference Proceedings.

Simington, B. & Lesiecki, M. (2004). A systems approach to automation education and training. In 2004 IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop (IEEE Cat. No. 04CH37530) (pp. 395-398). IEEE.

Srivastava, P. (2012). Educational informatics: An era in education. In 2012 IEEE International Conference on Technology Enhanced Education (ICTEE) (pp. 1-10). IEEE.

Stankovski, S., Tarjan, L., Skrinjar, D., Ostojic, G. & Senk, I. (2009). Using a didactic manipulator in mechatronics and industrial engineering courses. IEEE Transactions on education, 53(4), 572-579.

Thiollent, M. (1988). Metodologia da pesquisa-ação. In Metodologia da pesquisa-ação (pp. 108-108).

Tripp, D. (2005). Action research: a methodological introduction. Educação e pesquisa, 31(3), 443-466.

Vásquez, R. E., Posada, N. L. & Castrillón, F. (2015). Development of a multipurpose experimental station for the teaching of process control. Form. Univ, 8, 1-10.

Wang, Q. G. & Zhang, Y. (2001). Robust identification of continuous systems with dead-time from step responses. Automatica, 37(3), 377-390.

Yuwana, M. & Seborg, D. E. (1982). A new method for on‐line controller tuning. AIChE Journal, 28(3), 434-440.

Descargas

Publicado

26/05/2022

Cómo citar

PUGLIESE, L. F. .; OLIVEIRA, T. G. de; SILVA, D. L. F. da; RODOR, F. F.; BRAGA, R. A. da S.; AMORIM, G. F. . Modelado y desarrollo de una planta didáctica a bajo costo para la enseñanza en sistemas multivariables. Research, Society and Development, [S. l.], v. 11, n. 7, p. e33011730249, 2022. DOI: 10.33448/rsd-v11i7.30249. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/30249. Acesso em: 30 jun. 2024.

Número

Sección

Ingenierías