Envases biodegradables antimicrobianos con aplicación de nanotecnología

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i8.30406

Palabras clave:

Polímero verde; Envasado de alimentos; Nanocompuestos; Nanoemulsión; Almidón.

Resumen

La producción de envases alimentarios sostenibles a partir de fuentes renovables representa una alternativa destacada al uso de plásticos de origen petroquímico. Por ejemplo, el almidón sigue siendo una de las opciones de reemplazo más estudiadas debido a su amplia disponibilidad, bajo costo y avances significativos en la mejora de las propiedades del empaque. En este contexto, las nanopartículas con propiedades antimicrobianas como aditivos juegan un papel clave en la fabricación de envases activos renovables con prestaciones superiores. En esta revisión, se proporciona un resumen completo de los trabajos de investigación que abordan estrategias para el uso de envases activos, el uso de almidón con polímero sostenible y nanopartículas antimicrobianas para prolongar la vida útil de los alimentos. Tras una breve introducción a los conceptos fundamentales relacionados con el almidón y los envases biodegradables y activos, se detallan los últimos avances em nanotecnología, que pueden minimizar el impacto en las propiedades organolépticas de los productos alimentarios, así como un aumento de la bioactividad, debido a el tamaño en escala nanométrica para mejorar la difusión de compuestos activos en la matriz de películas activas a base de almidón.

Citas

Abramovits, W., Granowski, P., & Arrazola, P. (2010). Applications of nanomedicine in dermatology: Use of nanoparticles in various therapies and imaging: Nanodermatology and therapies. Journal of Cosmetic Dermatology, 9(2), 154–159.

ABRE – Associação Brasileira de Embalagem. (2021). Estudo ABRE macroeconômico de embalagem e cadeia de consumo. https://www.abre.org.br/dados-do-setor/ano2019/

Ahankari, S. S., Subhedar, A. R., Bhadauria, S. S., & Dufresne, A. (2021). Nanocellulose in food packaging: A review. Carbohydrate Polymers, 255, 117479.

Al-Tayyar, N. A., Youssef, A. M., & Al-Hindi, R. R. (2020). Edible coatings and antimicrobial nanoemulsions for enhancing shelf life and reducing foodborne pathogens of fruits and vegetables: A review. Sustainable Materials and Technologies, 26, e00215.

Amiri, E., Aminzare, M., Azar, H. H., & Mehrasbi, M. R. (2019). Combined antioxidant and sensory effects of corn starch films with nanoemulsion of Zataria multiflora essential oil fortified with cinnamaldehyde on fresh ground beef patties. Meat Science, 153, 66–74.

Appendini, P., & Hotchkiss, J. H. (2002). Review of antimicrobial food packaging. Innovative Food Science & Emerging Technologies, 3(2), 113–126.

Araujo-Farro, P. C., Podadera, G., Sobral, P. J. A., & Menegalli, F. C. (2010). Development of films based on quinoa (Chenopodium quinoa, Willdenow) starch. Carbohydrate Polymers, 81(4), 839–848.

Bajpai, V. K., Kamle, M., Shukla, S., Mahato, D. K., Chandra, P., Hwang, S. K., Kumar, P., Huh, Y. S., & Han, Y. K. (2018). Prospects of using nanotechnology for food preservation, safety, and security. Journal of Food and Drug Analysis, 26(4), 1201–1214.

Bemiller, J. N., & Whistler R. L. (2009) Starch: Chemistry and technology. (3a ed.), Academic Press.

Brandolt, S. D. F., Daitx, T. S., Mauler, R. S., Ornaghi Junior, H. L., Crespo, J. S., & Carli, L. N. (2019). Synergistic effect between different clays and plasticizer on the properties of PHBV nanocomposites. Polymer Composites, 40(10), 3835–3843.

Cano, A., Cháfer, M., Chiralt, A., & González-Martínez, C. (2016). Development and characterization of active films based on starch-PVA, containing silver nanoparticles. Food Packaging and Shelf Life, 10, 16–24.

Chandla, N. K., Saxena, D. C., & Singh, S. (2017). Amaranth (Amaranthus spp.) starch isolation, characterization, and utilization in development of clear edible films. Journal of Food Processing and Preservation, 41(6), e13217.

Chawla, R., Sivakumar, S., & Kaur, H. (2021). Antimicrobial edible films in food packaging: Current scenario and recent nanotechnological advancements- a review. Carbohydrate Polymer Technologies and Applications, 2, 100024.

Farahnaky, A., Saberi, B., & Majzoobi, M. (2013). Effect of glycerol on physical and mechanical properties of wheat starch edible films: Glycerol on properties of wheat starch films. Journal of Texture Studies, 44(3), 176–186.

Ferreira, T. P. M., Nepomuceno, N. C., Medeiros, E. L. G., Medeiros, E. S., Sampaio, F. C., Oliveira, J. E., Oliveira, M. P., Galvão, L. S., Bulhões, E. O., & Santos, A. S. F. (2019). Antimicrobial coatings based on poly(dimethyl siloxane) and silver nanoparticles by solution blow spraying. Progress in Organic Coatings, 133, 19–26.

Firouz, M. S., Mohi-Alden, K., & Omid, M. (2021). A critical review on intelligent and active packaging in the food industry: Research and development. Food Research International, 141, 110113.

Fitch-Vargas, P. R., Aguilar-Palazuelos, E., de Jesús Zazueta-Morales, J., Vega-García, M. O., Valdez-Morales, J. E., Martínez-Bustos, F., & Jacobo-Valenzuela, N. (2016). Physicochemical and microstructural characterization of corn starch edible films obtained by a combination of extrusion technology and casting technique. Journal of Food Science, 81(9), 2224–2232.

Hendessi, S., Sevinis, E. B., Unal, S., Cebeci, F. C., Menceloglu, Y. Z., & Unal, H. (2016). Antibacterial sustained-release coatings from halloysite nanotubes/waterborne polyurethanes. Progress in Organic Coatings, 101, 253–261.

Jaramillo, C. M., Gutiérrez, T. J., Goyanes, S., Bernal, C., & Famá, L. (2016). Biodegradability and plasticizing effect of yerba mate extract on cassava starch edible films. Carbohydrate Polymers, 151, 150–159.

Jayakumar, A, Heera, K. V., Sumi, T. S., Joseph. M., Mathew, S. G., Praveen, G., Nair, I. C., & Radhakrishnanm, E. K. (2019) Starch-PVA composite films with zinc-oxide nanoparticles and phytochemicals as intelligent pH sensing wraps for food package application. International Journal of Biological Macromolecules, 136, 395-403.

Ji, N., Liu, C., Zhang, S., Xiong, L., & Sun, Q. (2016). Elaboration and characterization of corn starch films incorporating silver nanoparticles obtained using short glucan chains. LWT, 74, 311–318.

Jildeh, N. B., & Matouq, M. (2020). Nanotechnology in packing materials for food and drug stuff opportunities. Journal of Environmental Chemical Engineering, 8(5), 104338.

Ju, J., Chen, X., Xie, Y., Yu, H., Guo, Y., Cheng, Y., Qian, H., & Yao, W. (2019). Application of essential oil as a sustained release preparation in food packaging. Trends in Food Science & Technology, 92, 22–32.

Jung, J., Raghavendra, G. M., Kim, D., & Seo, J. (2018). One-step synthesis of starch-silver nanoparticle solution and its application to antibacterial paper coating. International Journal of Biological Macromolecules, 107, 2285–2290.

Khaneghah, A. M., Hashemi, S. M. B., & Limbo, S. (2018). Antimicrobial agents and packaging systems in antimicrobial active food packaging: An overview of approaches and interactions. Food and Bioproducts Processing, 111, 1–19.

Klangmuang, P., & Sothornvit, R. (2016). Barrier properties, mechanical properties and antimicrobial activity of hydroxypropyl methylcellulose-based nanocomposite films incorporated with Thai essential oils. Food Hydrocolloids, 61, 609–616.

Kocharunchitt, C., Mellefont, L., Bowman, J. P., & Ross, T. (2020). Application of chlorine dioxide and peroxyacetic acid during spray chilling as a potential antimicrobial intervention for beef carcasses. Food Microbiology, 87, 103355.

Kong, R., Wang, J., Cheng, M., Lu, W., Chen, M., Zhang, R., & Wang, X. (2020). Development and characterization of corn starch/PVA active films incorporated with carvacrol nanoemulsions. International Journal of Biological Macromolecules, 164, 1631–1639.

Kongkaoroptham, P., Piroonpan, T., & Pasanphan, W. (2021). Chitosan nanoparticles based on their derivatives as antioxidant and antibacterial additives for active bioplastic packaging. Carbohydrate Polymers, 257, 117610.

Kumar, P., Mahajan, P., Kaur, R., & Gautam, S. (2020). Nanotechnology and its challenges in the food sector: A review. Materials Today Chemistry, 17, 100332.

Kuswandi. B., & Moradi, M. (2018) Improvement of Food Packaging Based on Functional Nanomaterial. In: Siddiquee, S., Melvin, G., Rahman, M. Nanotechnology: Applications in Energy, Drug and Food. Springer Nature, Switzerland 309–344.

Maniglia, B. C., Tessaro, L., Ramos, A. P., & Tapia-Blácido, D. R. (2019). Which plasticizer is suitable for films based on babassu starch isolated by different methods? Food Hydrocolloids, 89, 143–152.

McClements, D. J. (2021). Advances in edible nanoemulsions: Digestion, bioavailability, and potential toxicity. Progress in Lipid Research, 81, 101081.

McClements, D. J., & Rao, J. (2011). Food-grade nanoemulsions: Formulation, fabrication, properties, performance, biological fate, and potential toxicity. Critical Reviews in Food Science and Nutrition, 51(4), 285–330.

Mendes, J. F., Norcino, L. B., Martins, H. H. A., Manrich, A., Otoni, C. G., Carvalho, E. E. N., Piccoli, R. H., Oliveira, J. E., Pinheiro, A. C. M., & Mattoso, L. H. C. (2020). Correlating emulsion characteristics with the properties of active starch films loaded with lemongrass essential oil. Food Hydrocolloids, 100, 105428.

Mousavi, S. N., Daneshvar, H., Seyed Dorraji, M. S., Ghasempour, Z., Panahi-Azar, V., & Ehsani, A. (2021). Starch/alginate/ Cu-g-C3N4 nanocomposite film for food packaging. Materials Chemistry and Physics, 267, 124583.

Nawab, A., Alam, F., & Hasnain, A. (2017). Mango kernel starch as a novel edible coating for enhancing shelf- life of tomato ( Solanum lycopersicum ) fruit. International Journal of Biological Macromolecules, 103, 581–586.

Ojogbo, E., Ogunsona, E. O., & Mekonnen, T. H. (2020). Chemical and physical modifications of starch for renewable polymeric materials. Materials Today Sustainability, 7–8, 100028.

Oleyaei, S. A., Almasi, H., Ghanbarzadeh, B., & Moayedi, A. A. (2016). Synergistic reinforcing effect of TiO2 and montmorillonite on potato starch nanocomposite films: Thermal, mechanical and barrier properties. Carbohydrate Polymers, 152, 253–262.

Oliveira Filho, J. G., Albiero, B. R., Cipriano, L., de Oliveira Nobre Bezerra, C. C., Oldoni, F. C. A., Egea, M. B., de Azeredo, H. M. C., & Ferreira, M. D. (2021). Arrowroot starch-based films incorporated with a carnauba wax nanoemulsion, cellulose nanocrystals, and essential oils: A new functional material for food packaging applications. Cellulose, 28(10), 6499–6511.

Ortega, F., Giannuzzi, L., Arce, V. B., & García, M. A. (2017). Active composite starch films containing green synthetized silver nanoparticles. Food Hydrocolloids, 70, 152–162.

Pagno, C.H., Costa, T.M.H., Menezes, E. W., Benvenutti, E. V., Hertz, P. F., Matte, C. R., Tosati, J. V., Monteiro, A. R., Rios, A.O., & Flôres, S. H. (2015) Development of active biofilms of quinoa (Chenopodium quinoa W.) starch containing gold nanoparticles and evaluation of antimicrobial activity. Food Chemistry, 173, 755-762.

Pelissari, F. M., Andrade-Mahecha, M. M., Sobral, P. J. do A., & Menegalli, F. C. (2013). Comparative study on the properties of flour and starch films of plantain bananas (Musa paradisiaca). Food Hydrocolloids, 30(2), 681–690.

Prakash, A., Baskaran, R., Paramasivam, N., & Vadivel, V. (2018). Essential oil based nanoemulsions to improve the microbial quality of minimally processed fruits and vegetables: A review. Food Research International, 111, 509–523.

Prakash, B., Singh, P., Kedia, A., & Dubey, N. K. (2012). Assessment of some essential oils as food preservatives based on antifungal, antiaflatoxin, antioxidant activities and in vivo efficacy in food system. Food Research International, 49(1), 201–208.

Raut, J. S., & Karuppayil, S. M. (2014). A status review on the medicinal properties of essential oils. Industrial Crops and Products, 62, 250–264.

Salvia-Trujillo, L., Rojas-Graü, M. A., Soliva-Fortuny, R., & Martín-Belloso, O. (2015). Use of antimicrobial nanoemulsions as edible coatings: Impact on safety and quality attributes of fresh-cut Fuji apples. Postharvest Biology and Technology, 105, 8–16.

Ribeiro Sanches, M. A., Camelo-Silva, C., Tussolini, L., Tussolini, M., Zambiazi, R. C., & Becker Pertuzatti, P. (2021). Development, characterization and optimization of biopolymers films based on starch and flour from jabuticaba (Myrciaria cauliflora) peel. Food Chemistry, 343, 128430.

Sánchez-González, L., Chiralt, A., González-Martínez, C., & Cháfer, M. (2011). Effect of essential oils on properties of film forming emulsions and films based on hydroxypropylmethylcellulose and chitosan. Journal of Food Engineering, 105(2), 246–253.

Settier-Ramírez, L., López-Carballo, G., Gavara, R., & Hernández-Muñoz, P. (2021). Broadening the antimicrobial spectrum of nisin-producing Lactococcus lactis subsp. Lactis to Gram-negative bacteria by means of active packaging. International Journal of Food Microbiology, 339, 109007.

Shojaee-Aliabadi, S., Hosseini, H., Mohammadifar, M. A., Mohammadi, A., Ghasemlou, M., Ojagh, S. M., Hosseini, S. M., & Khaksar, R. (2013). Characterization of antioxidant-antimicrobial κ-carrageenan films containing Satureja hortensis essential oil. International Journal of Biological Macromolecules, 52, 116–124.

Silva, F. A. da, & Rabelo, D. (2017). O uso sustentável de polímeros. Revista Processos Químicos, 11(21), 9–16.

Sullivan, D. J., Azlin-Hasim, S., Cruz-Romero, M., Cummins, E., Kerry, J. P., & Morris, M. A. (2020). Antimicrobial effect of benzoic and sorbic acid salts and nano-solubilisates against Staphylococcus aureus, Pseudomonas fluorescens and chicken microbiota biofilms. Food Control, 107, 106786.

Thakur, R., Pristijono, P., Scarlett, C. J., Bowyer, M., Singh, S. P., & Vuong, Q. V. (2019). Starch-based films: Major factors affecting their properties. International Journal of Biological Macromolecules, 132, 1079–1089.

Van Long, N. N., Joly, C., & Dantigny, P. (2016). Active packaging with antifungal activities. International Journal of Food Microbiology, 220, 73–90.

Varghese, S. A., Siengchin, S., & Parameswaranpillai, J. (2020). Essential oils as antimicrobial agents in biopolymer-based food packaging—A comprehensive review. Food Bioscience, 38, 100785.

Xiong, Y., Li, S., Warner, R. D., & Fang, Z. (2020). Effect of oregano essential oil and resveratrol nanoemulsion loaded pectin edible coating on the preservation of pork loin in modified atmosphere packaging. Food Control, 114, 107226.

Wu, F., Misra, M., & Mohanty, A. K. (2021). Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging. Progress in Polymer Science, 117, 101395.

Zhou, X., Hao, Y., Yuan, L., Pradhan, S., Shrestha, K., Pradhan, O., Liu, H., & Li, W. (2018). Nano-formulations for transdermal drug delivery: A review. Chinese Chemical Letters, 29(12), 1713–1724.

Żołek-Tryznowska, Z., & Holica, J. (2020). Starch films as an environmentally friendly packaging material: Printing performance. Journal of Cleaner Production, 276, 124265.

Descargas

Publicado

07/06/2022

Cómo citar

SOUZA, A. L. de; VIEIRA, M. J. A.; PAIVA, M. J. do A. e; BITTENCOURT, M. T. .; VIEIRA, Érica N. R.; LEITE JÚNIOR, B. R. de C. Envases biodegradables antimicrobianos con aplicación de nanotecnología. Research, Society and Development, [S. l.], v. 11, n. 8, p. e3511830406, 2022. DOI: 10.33448/rsd-v11i8.30406. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/30406. Acesso em: 1 jul. 2024.

Número

Sección

Revisiones