Proceso simplificado para producir margarinas reducido en ácidos grasos saturados utilizando organogeles de cera vegetal

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i4.3046

Palabras clave:

Margarina; Emulsión; Cera de candelilla; Ácidos grasos saturados

Resumen

La necesidad de reducir la cantidad de ácidos grasos saturados en la dieta (SFA) hizo que la búsqueda de reemplazos para estas grasas fuera un campo muy importante para la investigación. En la búsqueda de tales reemplazos, la tecnología de organogel ha demostrado un gran potencial. Este estudio tuvo el objetivo de producir margarinas SFA reducidas utilizando tecnología de organogel para estructurar aceites vegetales. Se realizó un proceso a escala de laboratorio (lote de 1 kg), las margarinas se produjeron utilizando el 80% de la fase lipídica (LP) y su composición de ácidos grasos, capacidad de extensión, dureza y estabilidad térmica se evaluaron y compararon con muestras comerciales de margarinas que van del 70 al 82% (LP). Se utilizó un diseño experimental para lograr un producto similar al producto comercial. Utilizando el análisis de las superficies de respuesta, fue posible observar que la capacidad de esparcimiento medida varió de 0,44 a 11,12 kg.s para las margarinas analizadas, y de 2,46 a 3,63 kg.s para las muestras comerciales, respectivamente. 0.35 hasta 7.37 kg desde la consistencia (1.89 - 2.78 kg para muestras comerciales) y 1.23 hasta 35.97 N para dureza (5.78 - 7.84 N para muestras comerciales), basado en tales resultados, se produjo una formulación optimizada utilizando aceite de soja y alto aceite de girasol oleico para lograr las mismas propiedades que los productos comerciales. En conclusión, fue posible producir margarinas, utilizando organogeles para la estructuración del aceite.

Citas

Alvarez-Mitre, F. M., Morales-Rueda, J. A., Dibildox-Alvarado, E., Charó-Alonso, M. A., & Toro-Vazquez, J. F. (2012). Shearing as a variable to engineer the rheology of candelilla wax organogels. Food Research International, 49(1), 580–587. https://doi.org/10.1016/j.foodres.2012.08.025

Bergman, R. N., & Ader, M. (2000). Free fatty acids and pathogenesis of type 2 diabetes mellitus. Trends in Endocrinology and Metabolism: TEM, 11(9), 351–356. http://www.ncbi.nlm.nih.gov/pubmed/11042464

Box, G. E. P., & Behnken, D. W. (1960). Some New Three Level Designs for the Study of Quantitative Variables. Technometrics, 2(4), 455–475. https://doi.org/10.1080/00401706.1960.10489912

Calligaris, S., Manzocco, L., Valoppi, F., & Nicoli, M. C. (2013). Effect of palm oil replacement with monoglyceride organogel and hydrogel on sweet bread properties. Food Research International, 51(2), 596–602. https://doi.org/10.1016/j.foodres.2013.01.007

Chrysan, M. M. (2005). Margarines and Spreads. In F. Shahidi (Ed.), Bailey’s Industrial Oil and Fat Products (6th ed., pp. 33–82). John Wiley & Sons Inc.

Dassanayake, L. S. K., Kodali, D. R., Ueno, S., & Sato, K. (2009). Physical Properties of Rice Bran Wax in Bulk and Organogels. Journal of the American Oil Chemists’ Society, 86(12), 1163–1173. https://doi.org/10.1007/s11746-009-1464-6

Garcia, R. K. A., Moreira Gandra, K., & Barrera-Arellano, D. (2013). Development of a zero trans margarine from soybean-based interesterified fats formulated using artificial neural networks. Grasas y Aceites, 64(5), 521–530. https://doi.org/10.3989/gya.049113

Hartmann, L., & Lago, R. C. (1973). Rapid preparation of fatty acid methyl esters from lipids. Laboratory Practices, 22(8), 475–476.

Hernandez, E., & Baker, R. a. (1991). Candelilla Wax Emulsion, Preparation and Stability. Journal of Food Science, 56(5), 1382–1383. https://doi.org/10.1111/j.1365-2621.1991.tb04779.x

Hwang, H.-S., Singh, M., Bakota, E. L., Winkler-Moser, J. K., Kim, S., & Liu, S. X. (2013). Margarine from Organogels of Plant Wax and Soybean Oil. Journal of the American Oil Chemists’ Society, 90(11), 1705–1712. https://doi.org/10.1007/s11746-013-2315-z

Kemeny, Z., Recseg, K., Henon, G., Kovari, K., & Zwobada, F. (2001). Deodorization of vegetable oils: prediction of trans polyunsaturated fatty acid content. J. Am. Oil Chem. Soc., 78(9), 973–979. https://doi.org/10.1007/s11746-001-0374-0

Manzocco, L., Calligaris, S., Da Pieve, S., Marzona, S., & Nicoli, M. C. (2012). Effect of monoglyceride-oil–water gels on white bread properties. Food Research International, 49(2), 778–782. https://doi.org/10.1016/j.foodres.2012.09.011

Morales-Rueda, J. A., Dibildox-Alvarado, E., Charó-Alonso, M. A., & Toro-Vazquez, J. F. (2009). Rheological Properties of Candelilla Wax and Dotriacontane Organogels Measured with a True-Gap System. Journal of the American Oil Chemists’ Society, 86(8), 765–772. https://doi.org/10.1007/s11746-009-1414-3

Rocha, J. C. B. (2012). Obtenção e caracterização de organogéis de óleo de soja preparados com cera de cana-de-açúcar e suas frações. Universidade Estadual de Campinas.

Rocha, J. C. B., Lopes, J. D., Mascarenhas, M. C. N., Arellano, D. B., Guerreiro, L. M. R., & da Cunha, R. L. (2013). Thermal and rheological properties of organogels formed by sugarcane or candelilla wax in soybean oil. Food Research International, 50(1), 318–323. https://doi.org/10.1016/j.foodres.2012.10.043

Roche, H. M., Phillips, C., & Gibney, M. J. (2007). The metabolic syndrome: the crossroads of diet and genetics. Proceedings of the Nutrition Society, 64(03), 371–377. https://doi.org/10.1079/PNS2005445

Rogers, M. A., Wright, A. J., & Marangoni, A. G. (2009a). Oil organogels: the fat of the future? Soft Matter, 5(8), 1594. https://doi.org/10.1039/b822008p

Rogers, M. A., Wright, A. J., & Marangoni, A. G. (2009b). Corrigendum to “Nanostructuring fiber morphology and solvent inclusions in 12-hydroxystearic acid/canola oil organogels” [Current Opinion in Colloid & Interface Science 14(1) (2009) 33–42]. Current Opinion in Colloid & Interface Science, 14(3), 223. https://doi.org/10.1016/j.cocis.2009.02.003

Sanibal, E. A. A., & Mancini-Filho, J. (2004). Perfil de ácidos graxos trans de óleo de gordura hidrogenada de soja no processo de fritura. Ciencia e Tecnologia de Alimentos, 24(1), 27–31.

Sundram, K., Karupaiah, T., & Hayes, K. (2007). No Title. Nutrition & Metabolism, 4(1), 3. https://doi.org/10.1186/1743-7075-4-3

Toro-Vazquez, J. F., Morales-Rueda, J. A., Dibildox-Alvarado, E., Charó-Alonso, M., Alonzo-Macias, M., & González-Chávez, M. M. (2007). Thermal and Textural Properties of Organogels Developed by Candelilla Wax in Safflower Oil. Journal of the American Oil Chemists’ Society, 84(11), 989–1000. https://doi.org/10.1007/s11746-007-1139-0

Woodside, J. V., & Kromhout, D. (2007). Fatty acids and CHD. Proceedings of the Nutrition Society, 64(04), 554–564. https://doi.org/10.1079/PNS2005465

Yilmaz, E., & Öğütcü, M. (2015). Oleogels as spreadable fat and butter alternatives: sensory description and consumer perception. RSC Advances, 5(62), 50259–50267. https://doi.org/10.1039/C5RA06689A

Zevenbergen, H., de Bree, a, Zeelenberg, M., Laitinen, K., van Duijn, G., & Flöter, E. (2009). Foods with a high fat quality are essential for healthy diets. Annals of Nutrition & Metabolism, 54 Suppl 1(suppl 1), 15–24. https://doi.org/10.1159/000220823

Zulim Botega, D. C., Marangoni, A. G., Smith, A. K., & Goff, H. D. (2013). The potential application of rice bran wax oleogel to replace solid fat and enhance unsaturated fat content in ice cream. Journal of Food Science, 78(9), C1334-9. https://doi.org/10.1111/1750-3841.12175

Descargas

Publicado

20/03/2020

Cómo citar

CHAVES, K. F.; ROCHA, J. C. B.; ARELLANO, D. B. Proceso simplificado para producir margarinas reducido en ácidos grasos saturados utilizando organogeles de cera vegetal. Research, Society and Development, [S. l.], v. 9, n. 4, p. e165943046, 2020. DOI: 10.33448/rsd-v9i4.3046. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/3046. Acesso em: 3 jul. 2024.

Número

Sección

Ciencias Agrarias y Biológicas