Bioconversión de subproductos agroindustriales en lípidos microbianos y bioemulsionante por Absidia cylindrospora var. cylindrospora UCP 1301

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i8.30829

Palabras clave:

Hongo oleaginoso; Emulsionante; Sustratos renovables.

Resumen

En Brasil se generan anualmente grandes cantidades de subproductos y residuos agroindustriales. A menudo, estos son subutilizados y desechados inadecuadamente, provocando contaminación ambiental. En este contexto, reutilizarlos como materia prima para obtener productos de alto valor agregado se convierte en una estrategia prometedora. Así, este estudio tuvo como objetivo investigar el potencial biotecnológico del hongo Mucorales Absidia cylindrospora UCP 1301 para la producción de biomasa oleaginosa y bioemulsionante (BE), utilizando subproductos agroindustriales como sustratos de bajo costo. En primer lugar, se realizó la identificación morfológica de la cepa para su confirmación. Luego, se realizaron fermentaciones, según un diseño factorial completo de 2³ para evaluar la influencia de las concentraciones de sustrato en la producción de biomasa, lípidos totales y BE. El hongo fue identificado como Absidia cylindrospora var. cylindrospora y los resultados la mostraron como un microorganismo oleaginoso, ya que acumuló lípidos por encima del 20% del peso seco. La mayor producción de biomasa (11,38 g/L) se encontró en la condición 3 del diseño factorial, mientras que el mayor rendimiento de lípidos (32,22 %) se alcanzó en el ensayo 6. Además, esta cepa se confirmó como un prometedor microorganismo productor de BE, debido a que alcanzó valores de IE24 superiores al 50 % en todas las condiciones de diseño factorial. El mayor IE24 con aceite de motor (93,3%) se obtuvo en la condición 7 y esta emulsión se mantuvo estable después de 150 días de incubación. El análisis estadístico mostró que los tres subproductos agroindustriales tuvieron una influencia significativa en la producción de biomasa, lípidos y BE, confirmando la idoneidad de sustratos no convencionales para la obtención tanto de aceite microbiano como de emulsificante, lo que hace que este bioproceso sea atractivo para varias industrias.

Biografía del autor/a

Rafael de Souza Mendonça, Catholic University of Pernambuco

Nucleus de Pesquisas en Ciencias Ambientales y Biotecnologia-NPCIAMB

Dayana Montero Rodríguez, Catholic University of Pernambuco

Nucleus de Pesquisas en Ciencias Ambientales y Biotecnologia-NPCIAMB

Adriana Ferreira de Souza , Catholic University of Pernambuco

Nucleus de Pesquisas en Ciencias Ambientales y Biotecnologia-NPCIAMB

Rosileide Fontenele da Silva Andrade, Catholic University of Pernambuco

Nucleus de Pesquisas en Ciencias Ambientales y Biotecnologia -NPCIAMB

Sérgio Mendonça de Almeida, Catholic University of Pernambuco

Nucleus de Pesquisas en Ciencias Ambientales y Biotecnologia-NPCIAMB

Citas

Adetunji, A. I., & Olaniran, A. O. (2021). Production and potential biotechnological applications of microbial surfactants: An overview. Saudi Journal of Biological Sciences. https://doi.org/10.1016/j.sjbs.2020.10.058

Alphy, M. P., Anjali, K. B., Vivek, N., Thirumalesh, B. V., Sindhu, R., Pugazhendi, A., Pandey, & Binod, P. (2021). Sweet sorghum juice as an alternative carbon source and adaptive evolution of Lactobacillus brevis NIE9.3.3 in sweet sorghum juice and biodiesel derived crude glycerol to improve 1, 3 propanediol production. Journal of Environmental Chemical Engineering. https://doi.org/10.1016/j.jece.2021.106086

Andrade, R. F. S., Silva, T. A. L.; Ribeaux, D. R., Rodriguez, D. M., Souza, A. F., Lima, M. A. B., Lima, R. A., Silva, C. A. A., & Campos-Takaki, G. M. (2018). Promising biosurfactant produced by Cunninghamella echinulata UCP 1299 Using renewable resources and Its application in cotton fabric cleaning process. Advances in Materials Science and Engineering. https://doi.org/10.1155/2018/1624573

Bao, W., Li, Z., Wang, X., Gao, R., Zhou, X., Cheng, S., Men, Y., & Zheng, L. (2021). Approaches to improve the lipid synthesis of oleaginous yeast Yarrowia lipolytica: A review. Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2021.111386

Bento, H. B. S., Carvalho, A. K. F., Reis, C. E. R., & Castro, H. F. (2020). Single cell oil production and modification for fuel and food applications: Assessing the potential of sugarcane molasses as culture medium for filamentous fungus. Industrial Crops and Products. https://doi.org/10.1016/j.indcrop.2020.112141

Berikten, D., & Hoşgün, E. Z. (2022). Ksiloz ve gliserol ortamlarinda çeşitli mayalarin lipit üretim kapasitelerinin belirlenmesi. Journal of the Institute of Science and Technology. https://doi.org/10.21597/jist.1034410

Cândido, T. R. S., Mendonça, R. S., Lins, U. M. B. L., Souza, A. F., Rodriguez, D. M., Campos-Takaki, G. M., & Andrade, R. F. S. (2022). Production of biosurfactants by Mucoralean fungi isolated from Caatinga bioma soil using industrial waste as renewable substrates. Research, Society and Development. https://doi.org/10.33448/rsd-v11i2.25332

Carmona-Cabello, M., García I. L., Papadaki, A., Tsouko, E., Koutinas, A., & Dorado, M. P. (2021). Biodiesel production using microbial lipids derived from food waste discarded by catering services. Bioresource Technology. https://doi.org/10.1016/j.biortech.2020.124597

Carvalho, A. K., Bento, H. B. S., Rivaldi, J. D., & de Castro, H. F. (2018). Direct transesterification of Mucor circinelloides biomass for biodiesel production: Effect of carbon sources on the accumulation of fungal lipids and biofuel properties. Fuel. https://doi.org/10.1016/j.fuel.2018.07.029

Chotard, M., Mounier, J., Meye, R. Padel, C., Claude, B., Nehmé, R., da Silva, D., Floch, S. L., & Lucchesi, M.-E. (2022). Biosurfactant-Producing Mucor Strains: Selection, Screening, and Chemical Characterization. Applied Microbiology. https://doi.org/10.3390/applmicrobiol2010018

Cooper, D. G., & Goldenberg, B. G. (1987). Surface-Active Agents from Two Bacilllus Species. Applied And Environmental Microbiology. https://doi.org/10.1128/aem.53.2.224-229.1987

Cordeiro, T. R. L., Nguyen, T. T. T., Lima, D. X. da Silva, S. B. G., Lima, C. F., Leitão, J. D. A., Gurgel, L. M. S., Lee, H. B., & Santiago, A. L. C. M. A. (2020). Two new species of the industrially relevant genus Absidia (Mucorales) from soil of the Brazilian Atlantic Forest. Acta Botanica Brasilica. https://doi.org/10.1590/0102-33062020abb0040

Datta, P., Pannu, S., Tiwari, P., & Pandey, L. (2022). Core Flooding Studies Using Microbial Systems. Microbial Enhanced Oil Recovery. https://doi.org/10.1007/978-981-16-5465-7_10

de Souza, C. A. F., Costa, C. M. C., Maia, L. C., & Santiago, A. L. C. M. A. (2013). Mucorales (Mucoromycotina). Parque Estadual Mata da Pimenteira: Riqueza Natural e Conservação da Caatinga, 51-63.

Dvoretsky, D. Dvoretsky, S., Temnov, M. Markin, I., Bushkovskaya, A., Golubyatnikov, O., & Ustinskaya, Y. (2018). Technology of using municipal wastewater for obtaining Chlorella vulgarisviomass with high lipid content for biofuel production. Chemical Engineering Transactions. https://doi.org/10.3303/CET1864082

Fazili, A. B. A., Shah, A. M., Zan, X. Naz, T., Nosheen, S., Nazir, Y., Ullah, S., Zhang, H., & Song, Y. (2022). Mucor circinelloides: a model organism for oleaginous fungi and its potential applications in bioactive lipid production. Microbial Cell Factories. https://doi.org/10.1186/s12934-022-01758-9

Ferreira, I. N. S., Rodríguez, D. M., Campos-Takaki, G. M. & Andrade, R. F. S. (2020). Biosurfactant and bioemulsifier as promising molecules produced by Mucor hiemalis isolated from Caatinga soil. Eletronic Journal of Biotechnology. https://doi.org/10.1016/j.ejbt.2020.06.006

Guedes, E. H. S., Santos, A. L., Ibiapina, A., Aguiar, A. O., Soares, C. M. S., Vellano, P. O., Santos, L. S. S., & Junior, A. F. C. (2021). Resíduos agroindustriais como substrato para a produção de lipases microbiana: uma revisão. Research, Society and Development. http://dx.doi.org/10.33448/rsd-v10i2.12537

Hashem, A. H., Abu-Elreesh, G., El-Sheikh, H., & Suleiman, W. B. (2022). Isolation, identification, and statistical optimization of a psychrotolerant Mucor racemosus for sustainable lipid production. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-022-02390-8

Hoffmann, K. (2010). Identification of the genus Absidia (Mucorales, Zygomycetes): a comprehensive taxonomic revision. In: Molecular identification of fungi. [s.l.] Springer. https://doi.org/10.1007/978-3-642-05042-8_19

Hoffmann, K., Discher, S., & Voigt, K. (2007). Revision of the genus Absidia (Mucorales, Zygomycetes) based on physiological, phylogenetic, and morphological characters; thermotolerant Absidia spp. form a coherent group, Mycocladiaceae fam. nov. Mycological research, 111(10), 1169-1183.

Kapoor, R., Ghosh, P., Kumar, M., Sengupta, S., Gupta, A., Kumar, S. S., & Pant, D. (2020). Valorization of agricultural waste for biogas based circular economy in India: a research outlook. Bioresource Technology, 304, 123036.

Kong, T. K., Zhao, H. ; Liu, X. L., & Ren, L. Y. (2021). Taxonomy and phylogeny of the Absidia (Cunninghamellaceae, Mucorales) introducing nine new species and two new combinations from China. Research Square. https://doi.org/10.21203/rs.3.rs-820672/v1

Lima, M. C., Silva, T. C. D. M., Souza, A. F., Luna, M. A. C., Andrade, R. F. S., Silva, C. A. A., & Okada, K. (2017). Produção simultânea de biomassa e lipídeos utilizando meios contendo resíduos agroindustriais por Mucor subtilíssimus UCP/WFCC 1262, Cunninghamella echinulata UCP/WFCC 1299 e Rhizopus microsporus UCP/WFCC 1304 isolados do solo da Caatinga de Pernambuco, Engevista, v. 19(5), pp. 1417-1430.

Linas, A. B., Bione, A. P., Fonseca, T. C. S., Silva, T. C., Silva, P. H., Morante, K. V., Andrade, R. F. S., & Campos-Takaki, G. M. (2017). Biosurfactant production by Cunninghamella phaeosphora UCP 1303 using controlled temperature through of Arduino. International Journal of Current Microbiology and Applied Sciences, 6(12), pp. 2708-2715. https://doi.org/10.20546/ijcmas.2017.612.314

Lu, H., Yadav, V., Zhong, M., Bilal, M., Taherzadeh, M., & Iqbal, H. M. N. (2022). Bioengineered microbial platforms for biomass-derived biofuel production - A review. Chemosphere, 288(Pt 2). https://doi.org/10.1016/j.chemosphere.2021.132528

Manocha, M. S. (1980). Lipid composition of Paracoccidioides brasiliensis: comparison between the yeast and mycelial forms. International Society for Human and Animal Mycology. https://doi.org/10.1080/00362178085380481

Markande, A. R., Patel, D., & Varjani, S. (2021). A review on biosurfactants: properties, applications and current developments. Bioresource Technology. https://doi.org/10.1016/j.biortech.2021.124963

Marques, N. S. A. A., Silva, I. G. S., Cavalcanti, D. L., Maia, P. C. S. V., Santos, V. P., Andrade, R. S. F., & Campos-Takaki, G. M. (2020). Eco-friendly bioemulsifier production by Mucor circinelloides UCP0001 isolated from mangrove sediments using renewable substrates for environmental applications. Biomolecules, 10(3), pp. 365. https://doi.org/10.3390/biom10030365

Marques, N. S. A. A., Silva, T. A. L., Andrade, R. F. S., Júnior, F. B., Okada, & K., Campos-Takaki, G. M. (2019). Lipopeptide biosurfactant produced by Mucor circinelloides UCP/WFCC 0001 applied in the removal of crude oil and engine oil from soil. Acta Scientiarum. Technology, 41(1), pp. e38986. https://doi.org/10.4025/actascitechnol.v41i1.38986

Martinez-Silveira, A., Garmendia, G., Rufo, & Vero, S. (2022). Production of microbial oils by the oleaginous yeast Rhodotorula graminis S1/2R in a medium based on agro-industrial by-products. World Journal of Microbiology and Biotechnology, 38(46). https://doi.org/10.1007/s11274-022-03236-1

Medeiros, A. D. M., Silva Junior, C. J. G., Souza, A. F., Cavalcanti, D. L., Rodriguez, D. M., Silva, C. A. A., & Andrade, R. F. S. (2022). Production of biosurfactant by Cunninghamella elegans UCP 0542 using food industry waste in 3 L flasks and evaluation of orbital agitation effect. Research, Society and Development, v. 11(4), pp. e50311427438. https://doi.org/10.33448/rsd-v11i4.27438

Mendonça, R. S., Sá, A. V. P., Rosendo, L. A., Santos, R. A., Marques, N. S. A. A., Souza, A. F., Rodríguez, D. M., & Campos-Takaki, G. M. (2021). Production of biosurfactant and lipids by a novel strain of Absidia cylindrospora UCP 1301 isolated from Caatinga soil using low-cost agro-industrial by-products. Brazilian Journal of Development, v.7(1). pp. 8300-8313. https://doi.org/10.34117/bjdv7n1-564

Mendonça. R. S., Alves, M. F., Souza, A. F., D. M., & Campos-Takaki, G. M. (2019). Bioemulsifier produced by a promising fungus Absidia sp. UCP 1144 isolated from Caatinga soil in the northeast of Brazil. Brazilian Journal of Development, v. 5(11), pp. 25402 – 25414. https://doi.org/10.34117/bjdv5n11-204

Montero-Rodríguez, D., Andrade, R. F. S., Lima, R. A., Silva, G. K. B., Ribeaux, D. R., Silva, T. A. L., Araújo, H. W. C., & Campos-Takaki, G. M. (2016). Conversion of agro-industrial wastes by Serratia marcescens UCP/WFCC 1549 into lipids suitable for biodiesel production. Chemical Engineering Transactions, 49:307-312. https://doi.org/10.3303/CET1649052

Morales-Guzmán, D., Martínez-Morales, F., Bertrand B., Rosas-Gálvan, N. S., Curiel-Maciel, N. F., Teymennet-Ramírez, K. V., Mazón-Román, L. E., Licea-Navarro, A. F., & Trejo-Hernández, M. R. (2021). Microbial prospection of communities that produce biosurfactants from the water column and sediments of the Gulf of Mexico. Biotechnology and Applied Biochemistry, v. 68(6), pp. 1202-1215. https://doi.org/10.1002/bab.2042

Moustogianni, A., Bellou, S., Triantaphyllidou, I. E., & Aggelis, G. (2015). Feasibility of raw glycerol conversion into single cell oil by zygomycetes under non‐aseptic conditions. Biotechnology and bioengineering. https://doi.org/10.1002/bit.25482

Nogueira, I. B., Rodríguez, D. M., da Silva Andradade, R. F., Lins, A. B., Bione, A. P., Silva, I. G. S., Franco, L. O., & Campos-Takaki, G. M. (2020). Bioconversion of agroindustrial waste in the production of bioemulsifier by Stenotrophomonas maltophilia UCP 1601 and application in bioremediation process. International Journal of Chemical Engineering. https://doi.org/10.1155/2020/9434059

P. Siramon, V. Punsuvon, & A. Riengsilchai. Optimization of lipid production by Mortierella isabellina using glycerol, a by-product of biodiesel production as a carbon source. Journal of Pure and Applied Microbiology, 10 (2016), pp. 865-871.

Pele, M. A., Rubio-Ribeaux, D., Vieira E. R., Souza, A. F., Luna, M. A. C., Rodríguez, D. M., Andrade, R. F. S., Alviano, D. S., Alviano, C. S., Barreto-Bergter, E., Santiago, A. L. C. M. A., & Campos-Takaki, G. M. (2019). Conversion of renewable substrates for biosurfactant production by Rhizopus arrhizus UCP 1607 and enhancing the removal of diesel oil from marine soil. Electronic Journal of Biotechnology, v. 38, pp. 40-48. https://doi.org/10.1016/j.ejbt.2018.12.003

Pele, M. A., Montero-Rodríguez, D., Rubio-Ribeaux, D., Souza, A. F., Luna, M. A. C., Santiago, M. F., Andrade, R. S. F., Silva, T. A. L., Santiago, A. L. C. M. A., & Campos-Takaki, G. M. (2018). Development and improved selected markers to biosurfactant and bioemulsifier production by Rhizopus strains isolated from Caatinga soil. African Journal of Biotechnology., 17(6), pp. 150-157. https://doi.org/10.5897/AJB2017.16230

Prabha, S., Verma, G., Pnadey, S., Singh, B., & Dwivedi, V. (2019). Utilization of Agro-industrial By-products for Production of Lipase Using Mix Culture Batch Process. Bioscience Biotechnology Research Communications, 12(3), pp. 748-756. http://dx.doi.org/10.21786/bbrc/12.3/30

Rahman, P. K., Mayat, A., Harvey, J. G. H., Randhawa, K.S., Relph, L.E., Armstrong, M.C. (2019). Biosurfactants and Bioemulsifiers from Marine Algae. In The Role of Microalgae in Wastewater Treatment, pp. 169-188. https://doi.org/10.1007/978-981-13-1586-2_13

Ricardino, I. E. F., Souza, M. N. C., & NETO, I. F. S. (2020). vantagens e possibilidades do reaproveitamento de resíduos agroindustriais. Alimentos: Ciência, Tecnologia e Meio Ambiente.

Ruli, M. M., Alvarez, A., Fuentes, M. S. & Colin, V. L. (2019). Production of a microbial emulsifier with biotechnological potential for environmental applications. Colloids and Surfaces B: Biointerfaces. https://doi.org/10.1016/j.colsurfb.2018.11.052

S. Papanikolaou, M. Rontou, A. Belka, M. Athenaki, C. Gardeli, A. Mallouchos, et al. Conversion of biodiesel-derived glycerol into biotechnological products of industrial significance by yeast and fungal strains. Engineering in Life Sciences, 17 (2016), pp. 262-281

Santiago, A. L. C. M. D. A., Santos, P. J. P. D., & Maia, L. C. (2013). Mucorales from the semiarid of Pernambuco, Brazil. Brazilian Journal of Microbiology, 44(1), 299-305.

Santiago, M. G., Lins, U. M. B. L., Campos-Takaki, G. M., Filho, L. O. C., & Andrade, R. F. S. (2021) Produção de biossurfactante por Mucor circinelloides UCP 0005 usando novo meio de cultura formulado com cascas de jatobá (Hymenaea courbaril L.) e milhocina. Brazilian Journal of Development.

Santiago, M. G., Lins, U. M. B. L., Campos-Takaki, G. M. Filho, L. O. C., & Silva, R. F. S. (2021). Biosurfactant production by Mucor circinelloides UCP 0005 using new culture medium formulated with jatoba (hymenaea courbaril) bark and corn steep liquor. Brazilian Journal of Development, v. 7(5), pp. 51292 – 51304. https://doi.org/10.34117/bjdv7n5-497

Saranraij, P., Sivasakthivelan, P., Hamzah, K., & Hasan, M. S. (2022). Microbial Fermentation Technology for Biosurfactants Production. n book: Microbial Surfactants pp. 25 -43. https://doi.org/10.1201/9781003247739-2.

Silva, A. A. D., Oliveira, J. M., & Cazetaa, M. L. (2022). Exopolysaccharyde production by Cryptococcus laurentii SD7 using molasses and corn steep liquor as substrates. Acta Scientiarum. Biological Sciences. https://doi.org/10.4025/actascibiolsci.v44i1.58543

Silva, A. C. S., Santos, P. N., Silva, T. A. L., Aandrade, R. F. S., & Campos-Takaki, G. M. (2018). Biosurfactant production by fungi as a sustainable alternative. Arquivos Do Instituto Biológico. https://doi.org/10.1590/1808-1657000502017

Silva, N. R. A. ; Luna, M. A. C. ; Santiago, A. L. C. M. A., Franco, L. O., Silva, G. K. B., Souza, P. M., Okada, K., Albuquerque, C. D. C., Silva, C. A. A., & Campos-Takaki, G. M. (2014). Biosurfactant-and-Bioemulsifier produced by a promising Cunninghamella echinulata isolated from Caatinga soil in the northeast of Brazil. International Journal of Molecular Sciences, v. 15(9), pp. 15377 –15395. https://doi.org/10.3390/ijms150915377

Son, J., Baritugo, K. A., Lim, S. H., Lim, H. J., Jeong, S., Lee, J. Y., Cheoi, J., Joo, J. C., Na, J. G. & Park, S. J. (2022). Microbial cell factories for the production of three-carbon backbone organic acids from agro-industrial wastes. Bioresource Technology. https://doi.org/10.1016/j.biortech.2022.126797

Souza, A. F., Rodríguez, D. M., Ribeaux, D. R., Luna, M. A. C., Silva, T. A. L., Andrade, R. F. S., Gusmão, N. B., & Campos-Takaki, G. M. (2016). Waste soybean oil and corn steep liquor as economic substrates for bioemulsifier and biodiesel production by Candida lipolytica UCP 0998. International journal of molecular sciences, v. 17(10), pp.1608. https://doi.org/10.3390/ijms17101608

Tao, W., Lin, J., Wang, W., Huang, & H., Li, S. (2019). Designer bioemulsifiers based on combinations of different polysaccharides with the novel emulsifying esterase AXE from Bacillus subtilis CICC 20034. Microbial Cell Factories. https://doi.org/10.1186/s12934-019-1221-y

Tavares, J., Alves, L., Silva, T. P. & Paixão, S. M. (2021). Design and validation of an expeditious analytical method to quantify the emulsifying activity during biosurfactants/bioemulsifiers production. Colloids and Surfaces B: Biointerfaces, v. 208. https://doi.org/10.1016/j.colsurfb.2021.112111

Tomaszewska-Hetman, L., Rymowicz, W., & Rywniska, A. (2020). Waste conversion into a sweetener-development of an innovative strategy for erythritol production by Yarrowia lipolytica. Sustainability. https://doi.org/doi:10.3390/su12177122

Uthandi, S., Kaliyaperumal, A., Srinivasan, N., Thangavelu, K., Muniraj, I. K. M, Gathergood, N., & Gupta, V. K. (2021). Microbial biodiesel production from lignocellulosic biomass: New insights and future challenges. Critical Reviews in Environmental Science and Technology, 1–30. https://doi.org/10.1080/10643389.2021.1877045

Vilas Bôas, R. N., & Mendes, M. (2022). A review of biodiesel production from non-edible raw materials using the transesterification process with a focus on influence of feedstock composition and free fatty acids. Journal of the Chilean Chemical Society.

Zadeh, P. H., Moghimi, H., & Hamedi, J. (2018). Biosurfactant production by Mucor circinelloides: Environmental applications and surface-active properties. Engineering in Life Sciences. https://doi.org/10.1002/elsc.201700149

Zhang, T. Y., Yu Y., Zhu H., Yang S. Z., Yang T. M., Zhang M. Y., & Zhang, Y. X. (2018). Absidia panacisoli sp. nov., isolated from rhizosphere of Panax notoginseng. International journal of systematic and evolutionary microbiology, v. 68(8), pp. 2468–2472. https://doi.org/10.1099/ijsem.0.002857

Zhao, H., Nie, Y., Zong, T., Dai, Y., & Liu, X. (2022). Three new species of Absidia (Mucoromycota) from China based on phylogeny, morphology and physiology. Diversity, 14(2), 132.

Zininga, J. T., Puri, A. K., Govender, A., Singh, S., & Permaul, K. (2018). Concomitant production of chitosan and lipids from a newly isolated Mucor circinelloides ZSKP for biodiesel production. Bioresource Technology, 272, pp. 545 - 551. https://doi.org/10.1016/j.biortech.2018.10.035

Descargas

Publicado

19/06/2022

Cómo citar

MENDONÇA, R. de S. .; RODRÍGUEZ, D. M. .; SOUZA , A. F. de .; ANDRADE, R. F. da S. .; CAMPOS-TAKAKI, G. M.; ALMEIDA, S. M. de . Bioconversión de subproductos agroindustriales en lípidos microbianos y bioemulsionante por Absidia cylindrospora var. cylindrospora UCP 1301. Research, Society and Development, [S. l.], v. 11, n. 8, p. e30411830829, 2022. DOI: 10.33448/rsd-v11i8.30829. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/30829. Acesso em: 22 nov. 2024.

Número

Sección

Ingenierías