Potencial de biorremediación de efluente de lavandería industrial por agaricomycetes del bosque seco tropical brasileño

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i9.31610

Palabras clave:

Estrés nutricional; Tiempo de crecimiento inicial; Enzimas ligninolíticas; Sin esterilidad; Ecotoxicidade.

Resumen

La biorremediación micótica de efluentes de lavado industrial de jeans es un tratamiento biotecnológico necesario para evitar la contaminación de cuerpos de agua. En la fase I, se evaluó la decoloración del Colorante Índigo Carmín (CIC) y del Efluente Textil (ET) por siente especies de Agaricomycetes del bosque tropical seco brasileño (Caatinga). Primero se provocó el estrés nutricional por Limitación de Nitrógeno (LN) en tres tiempos experimentales, T1 (1 día), T2 (4 días) y T3 (7 días). En la fase II, los microorganismos se cultivaron en los tiempos de crecimiento inicial, Ci1 (10 días) y Ci2 (25 días), Sin Adición de Nutrientes (SAN) y se indujo estrés por LN. Posteriormente las pruebas de decoloración de CIC y ET continuaron durante 28 días. En el análisis ecotóxico, las muestras biotratadas en la fase II se probaron en nauplios de Artemia HIGH 5 sin adición de alimento. En la fase I, los porcentajes de decoloración de CIC y ET fueron superiores al 55% utilizando los hongos F1, F2, F5 y F6 durante 10 días sin esterilidad. En la fase II, los mejores porcentajes de decoloración se encontraron para ET en Ci1 y para CIC en Ci2, con F1 y F5 (identificados por biología molecular). Los resultados mostraron que Ci1 (SAN) aumentó la biodegradación de ET y Ci2 (SAN) favoreció la biodegradación de CIC, en T1 (LN) sin esterilidad. La mejor actividad enzimática de lacasa y lignina peroxidasa se presentó en F5. Los extractos enzimáticos presentaron un comportamiento cinético de Michaelis-Menten. Todas las muestras de ET biorremediadas en la fase II, no mostraron toxicidad sobre Artemia sp. en 48 horas de experimentación.

Citas

Abessa, D., Ortega, A., Pustiglione Marinsek, G., Roselli, L., Chelotti, L., & Perina, F. (2021). Acute Toxicity of Cigarette Butts Leachate on Nauplii of Artemia sp. Toxicidade aguda do lixiviado de bitucas de cigarro sobre Náuplios de Artemia sp. Brazilian Journal of Animal and Environmental Research, 4(1), 659-670. https://doi.org/10.34188/bjaerv4n1-055

Alao, M. B., & Adebayo, E. A. (2022). Fungi as veritable tool in bioremediation of polycyclic aromatic hydrocarbons-polluted wastewater. Journal of Basic Microbiology, 62(3-4), 223-244. https://doi.org/10.1002/jobm.202100376

Baldrian. P., Valášková, V., Merhautová, V., & Gabriel, J. (2005). Degradation of lignocellulose by Pleurotus ostreatus in the presence of copper, manganese, lead and zinc. Research in Microbiology, 156(5-6), 670-676. https://doi.org/10.1016/j.resmic.2005.03.007

Baptista, N. M. Q., Santos, A. C., Arruda, F. V. F., & Gusmão, N. B. (2012). Production of Enzymes by Lignin Peroxidase and Laccase Filamentous Fungi. Scientia Plena, 8(1). https://www.scientiaplena.org.br/sp/article/view/527/428

Barrera, N., Guerrero, L., Debut, A., & Santa-Cruz, P. (2018). Printable nanocomposites of polymers and silver nanoparticles for antibacterial devices produced by DoD technology. PLOS ONE, 13(7), e0200918. https://doi.org/10.1371/journal.pone.0200918

Bartolomé-Camacho, M. C. (2007). Valoración de la toxicidad aguda de biocidas utilizados en ambientes de la vida privada y la salud pública sobre Artemia franciscana. Revista Latinoamericana De Recursos Naturales, 3(1), 90-97. http://revista.itson.edu.mx/index.php/rlrn/article/view/94

Bedoui, A., Tigini, V., Ghedira, K., Varese, G. C., & Ghedira, L. C. (2015). Evaluación de una eventual ecotoxicidad inducida por efluentes textiles utilizando una batería de biotests. Environmental Science and Polluttion Research, 22(21), 16700-16708. https://doi.org/10.1007/s11356-015-4862-3

Ben Younes, S., & Sayadi, S. (2013). Detoxification of Indigo carmine using a combined treatment via a novel trimeric thermostable laccase and microbial consortium. Journal of Molecular Catalysis B: Enzymatic, 87, 62-68. https://doi.org/10.1016/j.molcatb.2012.10.007

Bergami, E., Bocci, E., Vannuccini, M. L., Monopoli, M., Salvati, A., Dawson, K. A., & Corsi, I. (2016). Nano-sized polystyrene affects feeding, behavior and physiology of brine shrimp Artemia franciscana larvae. Ecotoxicology and Environmental Safety, 123, 18-25. https://doi.org/10.1016/j.ecoenv.2015.09.021

Bergsten-Torralba. L. R., Giese, E., Buss, D., & Silva, M. (2018). Descoloração de efluente têxtil por fungo em condições não estéreis. XXII Congresso Brasileiro de Engenharia Química, Blucher Chemical Engineering Proceedings, 1(5), 1598-1601. https://doi.org/10.5151/cobeq2018-PT.0425

Bernal, S. P. F., Lira, M. M. A., Jean-Baptiste, J., Garcia, P. E., Batista, E., Ottoni, J. R., & Passarini, M. R. Z. (2021). Biotechnological potential of microorganisms from textile effluent: isolation, enzymatic activity and dye discoloration. Annals of the Brazilian Academy of Sciences, 93(4), e20191581. https://doi.org/10.1590/0001-3765202120191581

Bilal, M., Asgher, M., Parra-Saldivar, R., Hu, H., Wang, W., Zhang, X., & Iqbal, H. M. N. (2017). Immobilized ligninolytic enzymes: an innovative and environmental responsive technology to tackle dye-based industrial pollutants – A review. Science of the Total Environment, 576, 646–659. https://doi.org/10.1016/j.scitotenv.2016.10.137

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. https://doi.org/10.1006/abio.1976.9999

Buswell, J. A., Cai, Y., & Chang, S. T. (1995). Effect of nutrient nitrogen and manganese on manganese peroxidase and laccase production by Lentinula (Lentinus) edodes. FEMS Microbiology Letters, 128(1), 81-87. https://doi.org/10.1111/j.1574-6968.1995.tb07504.x

Camacho-Morales, R. L., Gerardo-Gerardo, J. L., Guillén, N. K., & Sánchez, J. E. (2017). Producción de enzimas ligninolíticas durante la degradación del herbicida paraquat por hongos de la pudrición blanca. Revista Argentina de Microbiología, 49(2), 189–196. https://doi.org/10.1016/j.ram.2016.11.004

Campos, R., Kandelbauer, A., Robra, K.H.A., Cavaco-Paulo, A., & Gübitz, G.M. (2001). Indigo degradation with purified laccases from Trametes hirsuta and Sclerotium rolfsii. Journal of Biotechnology, 89(1-2), 131–139. https://doi.org/10.1016/S0168-1656(01)00303-0

Chhabra, M., Mishra, S., & Sreekrishnan, T. R. (2015). Combination of chemical and enzymatic treatment for eficiente decolorization/degradation of textile effluent: High operational stability of the continuous process. Biochemical Engineering Journal, 93, 17–24. https://doi.org/10.1016/j.bej.2014.09.007

Conceição, T., Koblitz, M., Kamida, H., & Góes-Neto, A. (2017). Study of the Production of Lentinus crinitus (L.) Fr. Lignolytic Enzymes Grown on Agro-Industrial Waste. Advances in Bioscience and Biotechnology, 8(8), 259-272. https://doi.org/10.4236/abb.2017.88019

Costa, M. A. L., Farinas, C. S., & Miranda, E. A. (2018). Ethanol precipitation as a downstream processing step for concentration of xylanases produced by submerged and solid-state fermentation. Brazilian Journal of Chemical Engineering, 35(2), 477–488. https://doi.org/10.1590/0104-6632.20180352s20160502

Dávila, L., Zambrano, C., Arango, O., Betancur, J., & Arango, W. (2020). Integral use of rice husks for bioconversion with white-rot fungi. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-00940-6

Dvorak, P., Benova, K., & Vitek, J. (2012). Alternative Biotest on Artemia franciscana. In (Ed.), Ecotoxicology. IntechOpen, (pp. 51–74). Ghousia Begum. https://doi.org/10.5772/29114

Epole, N., Domínguez-Martín, E. M., Amilcar, R., Tavares, J., Vera, I., Pereira, P., Cebola, M-J., & Rijo, P. (2020). Artemia species: An Important Tool to Screen General Toxicity Samples. Current Pharmaceutical Design, 26(24), 2892-2908. https://doi.org/10.2174/1381612826666200406083035

Food and Agriculture Organization. FAO (2022). Artemia spp. Cultured Aquatic Species Information Programme. Text by Van Stappen, G.. Fisheries and Aquaculture Division [online]. Rome. Updated 2012-02-28 [Cited Thursday, June 23rd 2022]. https://www.fao.org/fishery/en/culturedspecies/Artemia_spp/en

Góes-Neto, A., Loguercio-Leite, C., & Guerrero, R. T. (2005). DNA Extraction from frozen field-collected and dehydrated herbarium fungal basidiomata: performance of SDS and CTAB-based methods. Biotemas, 18(2), 19-32. https://doi.org/10.5007/%25x

Gupta, A., & Asim, J. (2019). Production of laccase by repeated batch semi-solid fermentation using wheat straw as substrate and support for fungal growth. Bioprocess and Biosystems Engineering, 42, 499-512.. https://doi.org/10.1007/s00449-018-2053-6

Gutiérrez Pulido, H., & de la Vara Salazar, R. (2012). Análisis y Diseño De Experimentos (3a ed). Mc Graw Hill.

Hatvani, N., & Mécs, I. (2003). Effects of certain heavy metals on the growth, dye decolorization, and enzyme activity of Lentinula edodes. Ecotoxicology and Environmental Safety, 55(2), 199-203. https://doi.org/10.1016/S0147-6513(02)00133-1

He, X. L., Song, C., Li, Y. Y., Wang, N., Xu, I., Han, E., & Wei, D. S. (2018). Efficient degradation of Azo dyes by a newly isolated fungos Trichoderma Tomentosum under non-sterile conditions. Ecotoxicology and Environmental Safety, 150, 232 – 239. https://doi.org/10.1016/j.ecoenv.2017.12.043

Henn, C., Monteiro, D. A., Boscolo, M., da Silva, R., & Gomes, E. (2020). Biodegradation of atrazine and ligninolytic enzyme production by basidiomycete strains. BMC Microbiology, 20(266). https://doi.org/10.1186/s12866-020-01950-0

Honorato, A. C., Machado, J. M., Celante, G., Borges, W. G. P., Dragunski, D.C., & Caetano, J. (2015). Biosorption of methylene blue using agro-industrial residues. Revista Brasileira de Engenharia Agrícola e Ambiental, 19(7), 705-710. https://doi.org/10.1590/1807-1929/agriambi.v19n7p705-710

Janusz, G., Pawlik, A., Sulej, J., Świderska-Burek, U., Jarosz-Wilkołazka, A., & Paszczyński, A. (2017). Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiology Reviews, 41(6), 941–962. https://doi.org/10.1093/femsre/fux049

Johnson, K. A., & Goody, R. S. (2011). The Original Michaelis Constant: Translation of the 1913 Michaelis–Menten Paper. Biochemistry, 50(39), 8264–8269. https://doi.org/10.1021/bi201284u

Kaushik, P., & Malik, A. (2009). Fungal dye decolourization: Recent advances and future potential. Environment International, 35(1), 127–141. https://doi.org/10.1016/j.envint.2008.05.010

Kenkebashvili, N., Elisashvili, V., & Wasser, S.P. (2012). Effect of carbon, nitrogen sources and copper concentration on the ligninolytic enzyme production by Coriolopsis gallica. Journal of Waste Conversion Bioproducts and Biotechnology, 1(2), 22–27. https://doi.org/10.5147/jpgs.2012.0100

Koutsaftis, A., & Aoyama, I. (2008). Toxicity of Diuron and copper pyrithione on the brine shrimp, Artemia franciscana: The effects of temperature and salinity. Journal of Environmental Science and Health, Part A, 43(14), 1581–1585. https://doi.org/10.1080/10934520802329794

Kumar, A., & Chandra, R. (2020). Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment. Heliyon, 6(2), e03170. https://doi.org/10.1016/j.heliyon.2020.e03170

Kuwahara, M., Glenn, J. K., Morgan, M. A., & Gold, M. H. (1984). Separation and characterization of two extracellular H2O2 dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Letters, 169(2), 247-250. https://doi.org/10.1016/0014-5793(84)80327-0

Lima-Júnior, N., Gibertoni, T. B., & Malosso, E. (2014). Delimitation of some neotropical laccate Ganoderma (Ganodermataceae): molecular phylogeny and morphology. Revista de Biología Tropical 62(3), 1197–1208. https://www.redalyc.org/articulo.oa?id=44932441028

Lordêlo, C. S. M., Brito, S. V., Silva, S. V., Mitoshi, K. H., De Vasconcellos-Neto, T. J. R., Góes-Neto, A., & Bellos, K. M. G. (2014). Production of Manganese Peroxidase by Trametes villosa on Unexpensive Substrate and Its Application in the Removal of Lignin from Agricultural Wastes. Advances in Bioscience and Biotechnology, 5(14), 1067-1077. https://doi.org/10.4236/abb.2014.514122

Mattila, H., Österman-Udd, J., Mali, T., & Lundell, T. (2022). Basidiomycota Fungi and ROS: Genomic Perspective on Key Enzymes Involved in Generation and Mitigation of Reactive Oxygen Species. Frontiers in Fungal Biology, 3, e837605. https://doi.org/10.3389/ffunb.2022.837605

Mehandia, S., Sharma, S. C.,, & Arya, S. K. (2020). Isolation and characterization of an alkali and thermostable laccase from a novel Alcaligenes faecalis and its application in decolorization of synthetic dyes. Biotechnology Reports, 25, e00413. https://doi.org/10.1016/j.btre.2019.e00413

Mehra, S., Singh, M., & Chadha, P. (2021). Adverse Impact of Textile Dyes on the Aquatic Environment as well as on Human Beings. Toxicology International, 28(2), 165-176. https://doi.org/10.18311/ti/2021/v28i2/26798

Moncalvo, J. M., Lutzoni, F. M., Rehner, A. S., Johnson, J., & Vilgalys, R. (2000). Phylogenetic relationships of agaric fungi based on nuclear large subunit ribosomal DNA sequences. Systematic Biology 49(2), 278–305. https://doi.org/10.1093/sysbio/49.2.278

Moreira, N. S. L. (2006). Enzimas ligninolíticas produzidas por Psilocybe castanella CCB444 em solo contaminado com hexaclorobenzeno – São Paulo. [Dissertação de Mestrado, Instituto de Botânica da Secretaria de Estado do Meio Ambiente], Governo do Estado de São Paulo, Infraestrutura e Meio Ambiente, Memórias do Instituto de Botânica. https://www.infraestruturameioambiente.sp.gov.br/institutodebotanica/2006/01/enzimas-ligninoliticas-produzidas-por-psilocybe-castanella-ccb444-em-solo-contaminado-com-hexaclorobenzeno-sao-paulo/

Naciri, N., Farahi, A., Rafqah, S., Nasrellah, H., El Mhammedi, M. A., Lançar, I., & Bakasse, M. (2016). Effective photocatalytic decolorization of indigo carmine dye in Moroccan natural phosphate-TiO2 aqueous suspensions. Optical Materials, 52, 38-43. https://doi.org/10.1016/j.optmat.2015.12.011

Oliveira, G. A. R., Lapuente, J., Teixido, C. P. E., Borras, M., & Oliveira, D. P. (2016). Textile dyes induce toxicity on zebrafish early life stages. Environmental Toxicology and Chemistry, 35(2), 429–434. https://doi.org/10.1002/etc.3202

Orozco, K., & Quesada, S. (1995). Determinación de la actividad de la fructosa 1,6 difosfatasa en leucocitos. Revista Médica del Hospital Nacional de Niños Dr. Carlos Sáenz Herrera, 30(1-2), 9-18. http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1017-85461995000100002&lng=en&nrm=iso

Osorio, J., Vidal, I., & Quintero, J. (2011). Decolorization of textile wastewater using the white rot fungi anamorph R1 of Bjerkandera sp. Revista Facultad de Ingeniería Universidad de Antioquia, 57, 85-93. https://revistas.udea.edu.co/index.php/ingenieria/article/view/14647/12803

Ozcirak Ergun, S.,, & Ozturk Urek, R. (2017). Production of ligninolytic enzymes by solid state fermentation using Pleurotus ostreatus. Annals of Agrarian Science, 15(2), 273–277. https://doi.org/10.1016/j.aasci.2017.04.003

Raman, D., & Kanmani S. (2016). Textile dye degradation using nano zero valent iron: A review. Journal of Environmental Management, 177, 341-355. https://doi.org/10.1016/j.jenvman.2016.04.034

Rio, G. F., Silva, B. V., Martinez, S. T., & Pinto, A. C. (2015). Anthranilic acids from isatin: an efficient, versatile and environmentally friendly method. Annals of the Brazilian Academy of Sciences, 87(3), 1525-1529. https://doi.org/10.1590/0001-3765201520140289

Rojo, N., Smith, K., Perales, J., & Mayer, P. (2012). Recreating the seawater mixture composition of HOCs in toxicity tests with Artemia franciscana by passive dosing. Aquatic Toxicology, 120-121, 27-34. https://doi.org/10.1016/j.aquatox.2012.04.006

Sakai, R., Mendoza, D. M., Konadu, K. T., Cindy, Aoki, Y., Hirajima, T., Ichinose, H., & Sasaki, K. (2022). Laccase-mediator system for enzymatic degradation of carbonaceous matter in the sequential pretreatment of double refractory gold ore from Syama mine, Mali. Hydrometallurgy, 212, e105894. https://doi.org/10.1016/j.hydromet.2022.105894

Santa-Cruz, P.A., & Teles, F.S. (2003). Spectra Lux Software v. 2.0 Beta. Ponto Quântico Nanodispositivos, RENAMI, 138. https://sites.ufpe.br/vitrine/softwares/spectra-lux/

Saroj, S., Dubey, S., & Agarwal, P. (2015). Evaluation of the efficacy of a fungal consortium for degradation of azo dyes and simulated textile dye effluents. Sustainable Water Resources Management, 1, 233–243. https://doi.org/10.1007/s40899-015-0027-2

Separrat, M. C. N., Martínez, M. J., Cabello, M. N., & Arambarri, A. M. (2002). Screening for ligninolytic enzymes in autochthonous fungal strains from Argentina isolated from different substrata. Revista Iberoamericana de Micología, 19(3), 181-185. http://www.reviberoammicol.com/2002-19/181185.pdf

Shertate, R.S., & Thorat, P. (2014). Biotransformation of textile dyes: a bioremedial aspect of marine environment. American Journal of Environmental Sciences, 10(5), 489-499. https://doi.org/10.3844/ajessp.2014.489.499

Singh, G., Capalash, N., Goel, R., & Sharma, P. (2007). A pH-stable laccase from alkali-tolerant γ-proteobacterium JB: Purification, characterization and indigo carmine degradation. Enzyme and Microbial Technology, 41(6-7), 794–799. https://doi.org/10.1016/j.enzmictec.2007.07.001

Singh, G., Singh, S., Kaur, K., Kumar Arya, S., & Sharma, P. (2019). Thermo and halo tolerant laccase from Bacillus sp. SS4: Evaluation for its industrial usefulness. The Journal of General and Applied Microbiology, 65(1), 26-33. https://doi.org/10.2323/jgam.2018.04.002

Staden, R., Beal, K. F., & Bonfield, J. K. (2000). The Staden Package, 1998. In: Misener, S., Krawetz, S.A. (Eds.), Bioinformatics methods and protocols. Methods in Molecular Biology, 132, (pp. 115–130). Humana Press, Totowa, NJ.

Tien, M., & Kirk, T. K. (1988). Lignin peroxidase of Phanerochaete Chrysosporium. Methods in Enzymology, 161, 238–249. https://doi.org/10.1016/0076-6879(88)61025-1

Velasco, S. J., Retana, O., Castro, M. J., Castro, M. G., Monroy, M., Ocampo, C., Cruz, C., & Becerril, C. (2016). Salinity effect on reproductive potential of four Artemia franciscana (Kellogg, 1906) Mexican populations grown in laboratory. International Journal of Fisheries and Aquatic Studies, 4(3), 247-352. https://www.fisheriesjournal.com/archives/?year=2016&vol=4&issue=3&part=D&ArticleId=753

Velayudhannair, K., Divya, K. R., & Munuswamy, N. (2017). Quality evaluation of the invader species, Artemia franciscana from Covelong salt works, Kelambakkam, South India. International Journal of Aquatic Biology,5(4), 246-251. https://doi.org/10.22034/ijab.v5i4.316

White, T. J., Bruns, T., Lee S., & Taylor J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J. (Eds.), PCR protocols, a guide to methods and applications, (pp. 315–322). Academic Press, New York. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

Yesilada, O., Birhanli, E., & Geckil, H. (2018). Bioremediation and Decolorization of Textile Dyes by White Rot Fungi and Laccase Enzymes. In Prasad, R. (Eds.), Mycoremediation and Environmental Sustainability. (pp. 121–153). Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-77386-5_5

Zhang, H., Zhang, S., He, F., Qin, X., Zhang, X., & Yang, Y. (2016). Characterization of a manganese peroxidase from white-rot fungus Trametes sp.48424 with strong ability of degrading different types of dyes and polycyclic aromatic hydrocarbons. Journal of Hazardous Materials, 320, 265–277. https://doi.org/10.1016/j.jhazmat.2016.07.065

Descargas

Publicado

07/07/2022

Cómo citar

BARRERA, N. E.; SANTOS NETO, I. J. dos; OLIVEIRA, V. R. T. de; GUSMÃO, N. B. de. Potencial de biorremediación de efluente de lavandería industrial por agaricomycetes del bosque seco tropical brasileño. Research, Society and Development, [S. l.], v. 11, n. 9, p. e23111931610, 2022. DOI: 10.33448/rsd-v11i9.31610. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/31610. Acesso em: 14 dic. 2024.

Número

Sección

Ciencias Agrarias y Biológicas