Desarrollo de un modelo de vía aérea tridimensional personalizado
DOI:
https://doi.org/10.33448/rsd-v11i9.31721Palabras clave:
Impresión tridimensional; Simulación; Tomografía Computarizada Multidetector; Capacitación.Resumen
Este estudio tuvo como objetivo desarrollar un modelo de vía aérea tridimensional personalizado basado en imágenes médicas relevantes, utilizando técnicas de fabricación aditiva. Evaluamos la capacidad del modelo para replicar las dimensiones de las imágenes adquiridas del tórax de un paciente mediante tomografía computarizada (TC) multidetector. Usando un software dedicado, se creó una malla tridimensional basada en las imágenes. Se adquirió un estudio de TC multidetector del modelo tridimensional a gran escala de la vía aérea para comparar sus dimensiones con las del estudio original en cuatro puntos predeterminados. Las medianas de las diferencias observadas en los cuatro puntos fueron de 0,4 mm (p = 0,686), -1,3 mm (p = 0,138), 0,7 mm (p = 0,141) y 0,1 mm (p = 0,892). El coeficiente de correlación intraclase entre las medidas del paciente y del modelo fue de 0,98 (intervalo de confianza del 95 %: 0,96-0,99, p < 0,001). Hemos desarrollado con éxito un modelo tridimensional de la vía aérea a partir de sus correspondientes imágenes médicas. Las diferencias en las dimensiones entre el modelo y las imágenes originales estaban en línea con las observadas en estudios previos y presumiblemente son irrelevantes para la mayoría de las aplicaciones.
Citas
Akiba, T., Inagaki, T., & Nakada, T. (2014). Three-Dimensional Printing Model of Anomalous Bronchi before Surgery. Annals of Thoracic and Cardiovascular Surgery, 20(Supplement), 659–662. https://doi.org/10.5761/atcs.cr.13-00189
AL-Ramahi, J., Luo, H., Fang, R., Chou, A., Jiang, J., & Kille, T. (2016). Development of an Innovative 3D Printed Rigid Bronchoscopy Training Model. Annals of Otology, Rhinology & Laryngology, 125(12), 965–969. https://doi.org/10.1177/0003489416667742
Barker, T.M., Earwarker, W. J. S., & Lisle, D. A. (1994). Accuracy of stereolithographic models of human anatomy. Australasian Radiology, 38(2), 106–111. https://doi.org/10.1111/j.1440-1673.1994.tb00146.x
Bustamante, S., Bose, S., Bishop, P., Klatte, R., & Norris, F. (2014). Novel Application of Rapid Prototyping for Simulation of Bronchoscopic Anatomy. Journal of Cardiothoracic and Vascular Anesthesia, 28(4), 1122–1125. https://doi.org/10.1053/j.jvca.2013.08.015
Byrne, T., Yong, S. A., & Steinfort, D. P. (2016). Development and Assessment of a Low-Cost 3D-printed Airway Model for Bronchoscopy Simulation Training. Journal of Bronchology & Interventional Pulmonology, 23(3), 251–254. https://doi.org/10.1097/LBR.0000000000000257
Choi, J.-Y., Choi, J.-H., Kim, N.-K., Kim, Y., Lee, J.-K., Kim, M.-K., Lee, J.-H., & Kim, M.-J. (2002). Analysis of errors in medical rapid prototyping models. International Journal of Oral and Maxillofacial Surgery, 31(1), 23–32. https://doi.org/10.1054/ijom.2000.0135
Colt, H. G. (2013). Simulation in bronchoscopy training: are we there yet? Current Respiratory Care Reports, 2(1), 61–68. https://doi.org/10.1007/s13665-012-0033-x
Ernst, A., Wahidi, M. M., Read, C. A., Buckley, J. D., Addrizzo-Harris, D. J., Shah, P. L., Herth, F. J. F., de Hoyos Parra, A., Ornelas, J., Yarmus, L., & Silvestri, G. A. (2015). Adult Bronchoscopy Training: Current state and suggestions for the future. Chest, 148(2), 321–332. https://doi.org/10.1378/chest.14-0678
Frühwald, J., Schicho, K. A., Figl, M., Benesch, T., Watzinger, F., & Kainberger, F. (2008). Accuracy of Craniofacial Measurements. Journal of Craniofacial Surgery, 19(1), 22–26. https://doi.org/10.1097/scs.0b013e318052ff1a
George, E., Liacouras, P., Rybicki, F. J., & Mitsouras, D. (2017). Measuring and Establishing the Accuracy and Reproducibility of 3D Printed Medical Models. RadioGraphics, 37(5), 1424–1450. https://doi.org/10.1148/rg.2017160165
Giannopoulos, A. A., Steigner, M. L., George, E., Barile, M., Hunsaker, A. R., Rybicki, F. J., & Mitsouras, D. (2016). Cardiothoracic Applications of 3-dimensional Printing. Journal of Thoracic Imaging, 31(5), 253–272. https://doi.org/10.1097/RTI.0000000000000217
Hoang, D., Perrault, D., Stevanovic, M., & Ghiassi, A. (2016). Surgical applications of three-dimensional printing: a review of the current literature and how to get started. Annals of Translational Medicine, 4(23), 456–456. https://doi.org/10.21037/atm.2016.12.18
Huotilainen, E., Jaanimets, R., Valášek, J., Marcián, P., Salmi, M., Tuomi, J., Mäkitie, A., & Wolff, J. (2014). Inaccuracies in additive manufactured medical skull models caused by the DICOM to STL conversion process. Journal of Cranio-Maxillofacial Surgery, 42(5), e259–e265. https://doi.org/10.1016/j.jcms.2013.10.001
Ibrahim, D., Broilo, T. L., Heitz, C., de Oliveira, M. G., de Oliveira, H. W., Nobre, S. M. W., dos Santos Filho, J. H. G., & Silva, D. N. (2009). Dimensional error of selective laser sintering, three-dimensional printing and PolyJetTM models in the reproduction of mandibular anatomy. Journal of Cranio-Maxillofacial Surgery, 37(3), 167–173. https://doi.org/10.1016/j.jcms.2008.10.008
Ionita, C. N., Mokin, M., Varble, N., Bednarek, D. R., Xiang, J., Snyder, K. V., Siddiqui, A. H., Levy, E. I., Meng, H., & Rudin, S. (2014). Challenges and limitations of patient-specific vascular phantom fabrication using 3D Polyjet printing. In R. C. Molthen & J. B. Weaver (Eds.), Proceedings of SPIE--the International Society for Optical Engineering (Vol. 9038, p. 90380M). Proc SPIE Int Soc Opt Eng. https://doi.org/10.1117/12.2042266
Langridge, B., Momin, S., Coumbe, B., Woin, E., Griffin, M., & Butler, P. (2018). Systematic Review of the Use of 3-Dimensional Printing in Surgical Teaching and Assessment. Journal of Surgical Education, 75(1), 209–221. https://doi.org/10.1016/j.jsurg.2017.06.033
Matsumoto, J. S., Morris, J. M., Foley, T. A., Williamson, E. E., Leng, S., McGee, K. P., Kuhlmann, J. L., Nesberg, L. E., & Vrtiska, T. J. (2015). Three-dimensional Physical Modeling: Applications and Experience at Mayo Clinic. RadioGraphics, 35(7), 1989–2006. https://doi.org/10.1148/rg.2015140260
Mitsouras, D., Liacouras, P., Imanzadeh, A., Giannopoulos, A. A., Cai, T., Kumamaru, K. K., George, E., Wake, N., Caterson, E. J., Pomahac, B., Ho, V. B., Grant, G. T., & Rybicki, F. J. (2015). Medical 3D Printing for the Radiologist. RadioGraphics, 35(7), 1965–1988. https://doi.org/10.1148/rg.2015140320
Miyazaki, T., Yamasaki, N., Tsuchiya, T., Matsumoto, K., Takagi, K., & Nagayasu, T. (2015). Airway Stent Insertion Simulated With a Three-Dimensional Printed Airway Model. The Annals of Thoracic Surgery, 99(1), e21–e23. https://doi.org/10.1016/j.athoracsur.2014.10.021
Parotto, M., Jiansen, J. Q., AboTaiban, A., Ioukhova, S., Agzamov, A., Cooper, R., O’Leary, G., & Meineri, M. (2017). Evaluation of a low-cost, 3D-printed model for bronchoscopy training. Anestezjologia Intensywna Terapia, 49(3), 189–197. https://doi.org/10.5603/AIT.a2017.0035
Pedersen, T. H., Gysin, J., Wegmann, A., Osswald, M., Ott, S. R., Theiler, L., & Greif, R. (2017). A randomised, controlled trial evaluating a low cost, 3D-printed bronchoscopy simulator. Anaesthesia, 72(8), 1005–1009. https://doi.org/10.1111/anae.13951
Petropolis, C., Kozan, D., & Sigurdson, L. (2015). Accuracy of medical models made by consumer-grade fused deposition modelling printers. Plastic Surgery, 23(2). https://doi.org/10.4172/plastic-surgery.1000912
Salmi, M., Paloheimo, K.-S., Tuomi, J., Wolff, J., & Mäkitie, A. (2013). Accuracy of medical models made by additive manufacturing (rapid manufacturing). Journal of Cranio-Maxillofacial Surgery, 41(7), 603–609. https://doi.org/10.1016/j.jcms.2012.11.041
Santana, R. R., Lozada, J., Kleinman, A., Al-Ardah, A., Herford, A., & Chen, J.-W. (2012). Accuracy of Cone Beam Computerized Tomography and a Three-Dimensional Stereolithographic Model in Identifying the Anterior Loop of the Mental Nerve: A Study on Cadavers. Journal of Oral Implantology, 38(6), 668–676. https://doi.org/10.1563/AAID-JOI-D-11-00130
Taft, R. M., Kondor, S., & Grant, G. T. (2011). Accuracy of rapid prototype models for head and neck reconstruction. The Journal of Prosthetic Dentistry, 106(6), 399–408. https://doi.org/10.1016/S0022-3913(11)60154-6
Wu, A.-M., Shao, Z.-X., Wang, J.-S., Yang, X.-D., Weng, W.-Q., Wang, X.-Y., Xu, H.-Z., Chi, Y.-L., & Lin, Z.-K. (2015). The Accuracy of a Method for Printing Three-Dimensional Spinal Models. PLOS ONE, 10(4), e0124291. https://doi.org/10.1371/journal.pone.0124291
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Mateus Samuel Tonetto; Hugo Goulart de Oliveira; Andre Frotta Muller; Paulo Roberto Stefani Sanches; Luciano Folador; Felipe Soares Torres; Tiago Severo Garcia
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.