Desarrollo de un modelo de vía aérea tridimensional personalizado

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i9.31721

Palabras clave:

Impresión tridimensional; Simulación; Tomografía Computarizada Multidetector; Capacitación.

Resumen

Este estudio tuvo como objetivo desarrollar un modelo de vía aérea tridimensional personalizado basado en imágenes médicas relevantes, utilizando técnicas de fabricación aditiva. Evaluamos la capacidad del modelo para replicar las dimensiones de las imágenes adquiridas del tórax de un paciente mediante tomografía computarizada (TC) multidetector. Usando un software dedicado, se creó una malla tridimensional basada en las imágenes. Se adquirió un estudio de TC multidetector del modelo tridimensional a gran escala de la vía aérea para comparar sus dimensiones con las del estudio original en cuatro puntos predeterminados. Las medianas de las diferencias observadas en los cuatro puntos fueron de 0,4 mm (p = 0,686), -1,3 mm (p = 0,138), 0,7 mm (p = 0,141) y 0,1 mm (p = 0,892). El coeficiente de correlación intraclase entre las medidas del paciente y del modelo fue de 0,98 (intervalo de confianza del 95 %: 0,96-0,99, p < 0,001). Hemos desarrollado con éxito un modelo tridimensional de la vía aérea a partir de sus correspondientes imágenes médicas. Las diferencias en las dimensiones entre el modelo y las imágenes originales estaban en línea con las observadas en estudios previos y presumiblemente son irrelevantes para la mayoría de las aplicaciones.

Biografía del autor/a

Mateus Samuel Tonetto, Universidade Federal do Rio Grande do Sul; Hospital de Clínicas de Porto Alegre

- Programa de Pós-Gradução em Ciências Pneumológicas, Universidade Federal do
Rio Grande do Sul, Porto Alegre, RS, Brasil.

- Serviço de Radiologia do Hospital de Clínicas de Porto Alegre, Porto Alegre, RS,
Brasil.

 

Hugo Goulart de Oliveira, Universidade Federal do Rio Grande do Sul; Hospital de Clínicas de Porto Alegre

- Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil

- Unidade de Endoscopia das Vias Aéreas do Serviço de Pneumologia do Hospital de
Clínicas de Porto Alegre, Porto Alegre, RS, Brasil

Andre Frotta Muller, Hospital de Clínicas de Porto Alegre

Serviço de Engenharia Biomédica do Hospital de Clínicas de Porto Alegre, Porto
Alegre, RS, Brasil

Paulo Roberto Stefani Sanches, Hospital de Clínicas de Porto Alegre

Serviço de Engenharia Biomédica do Hospital de Clínicas de Porto Alegre, Porto
Alegre, RS, Brasil.

Luciano Folador, Universidade Federal do Rio Grande do Sul; Hospital de Clínicas de Porto Alegre

Programa de Pós-Gradução em Ciências Pneumológicas, Universidade Federal do
Rio Grande do Sul, Porto Alegre, RS, Brasil

Serviço de Radiologia do Hospital de Clínicas de Porto Alegre, Porto Alegre, RS,
Brasil

Felipe Soares Torres, University of Toronto; Toronto General Hospital

Cardiothoracic Division of Toronto General Hospital, Toronto, ON, Canada

University of Toronto, Toronto, ON, Canada

Tiago Severo Garcia, Universidade Federal do Rio Grande do Sul; Hospital de Clínicas de Porto Alegre

- Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil

- Programa de Pós-Gradução em Ciências Pneumológicas, Universidade Federal do
Rio Grande do Sul, Porto Alegre, RS, Brasil

Citas

Akiba, T., Inagaki, T., & Nakada, T. (2014). Three-Dimensional Printing Model of Anomalous Bronchi before Surgery. Annals of Thoracic and Cardiovascular Surgery, 20(Supplement), 659–662. https://doi.org/10.5761/atcs.cr.13-00189

AL-Ramahi, J., Luo, H., Fang, R., Chou, A., Jiang, J., & Kille, T. (2016). Development of an Innovative 3D Printed Rigid Bronchoscopy Training Model. Annals of Otology, Rhinology & Laryngology, 125(12), 965–969. https://doi.org/10.1177/0003489416667742

Barker, T.M., Earwarker, W. J. S., & Lisle, D. A. (1994). Accuracy of stereolithographic models of human anatomy. Australasian Radiology, 38(2), 106–111. https://doi.org/10.1111/j.1440-1673.1994.tb00146.x

Bustamante, S., Bose, S., Bishop, P., Klatte, R., & Norris, F. (2014). Novel Application of Rapid Prototyping for Simulation of Bronchoscopic Anatomy. Journal of Cardiothoracic and Vascular Anesthesia, 28(4), 1122–1125. https://doi.org/10.1053/j.jvca.2013.08.015

Byrne, T., Yong, S. A., & Steinfort, D. P. (2016). Development and Assessment of a Low-Cost 3D-printed Airway Model for Bronchoscopy Simulation Training. Journal of Bronchology & Interventional Pulmonology, 23(3), 251–254. https://doi.org/10.1097/LBR.0000000000000257

Choi, J.-Y., Choi, J.-H., Kim, N.-K., Kim, Y., Lee, J.-K., Kim, M.-K., Lee, J.-H., & Kim, M.-J. (2002). Analysis of errors in medical rapid prototyping models. International Journal of Oral and Maxillofacial Surgery, 31(1), 23–32. https://doi.org/10.1054/ijom.2000.0135

Colt, H. G. (2013). Simulation in bronchoscopy training: are we there yet? Current Respiratory Care Reports, 2(1), 61–68. https://doi.org/10.1007/s13665-012-0033-x

Ernst, A., Wahidi, M. M., Read, C. A., Buckley, J. D., Addrizzo-Harris, D. J., Shah, P. L., Herth, F. J. F., de Hoyos Parra, A., Ornelas, J., Yarmus, L., & Silvestri, G. A. (2015). Adult Bronchoscopy Training: Current state and suggestions for the future. Chest, 148(2), 321–332. https://doi.org/10.1378/chest.14-0678

Frühwald, J., Schicho, K. A., Figl, M., Benesch, T., Watzinger, F., & Kainberger, F. (2008). Accuracy of Craniofacial Measurements. Journal of Craniofacial Surgery, 19(1), 22–26. https://doi.org/10.1097/scs.0b013e318052ff1a

George, E., Liacouras, P., Rybicki, F. J., & Mitsouras, D. (2017). Measuring and Establishing the Accuracy and Reproducibility of 3D Printed Medical Models. RadioGraphics, 37(5), 1424–1450. https://doi.org/10.1148/rg.2017160165

Giannopoulos, A. A., Steigner, M. L., George, E., Barile, M., Hunsaker, A. R., Rybicki, F. J., & Mitsouras, D. (2016). Cardiothoracic Applications of 3-dimensional Printing. Journal of Thoracic Imaging, 31(5), 253–272. https://doi.org/10.1097/RTI.0000000000000217

Hoang, D., Perrault, D., Stevanovic, M., & Ghiassi, A. (2016). Surgical applications of three-dimensional printing: a review of the current literature and how to get started. Annals of Translational Medicine, 4(23), 456–456. https://doi.org/10.21037/atm.2016.12.18

Huotilainen, E., Jaanimets, R., Valášek, J., Marcián, P., Salmi, M., Tuomi, J., Mäkitie, A., & Wolff, J. (2014). Inaccuracies in additive manufactured medical skull models caused by the DICOM to STL conversion process. Journal of Cranio-Maxillofacial Surgery, 42(5), e259–e265. https://doi.org/10.1016/j.jcms.2013.10.001

Ibrahim, D., Broilo, T. L., Heitz, C., de Oliveira, M. G., de Oliveira, H. W., Nobre, S. M. W., dos Santos Filho, J. H. G., & Silva, D. N. (2009). Dimensional error of selective laser sintering, three-dimensional printing and PolyJetTM models in the reproduction of mandibular anatomy. Journal of Cranio-Maxillofacial Surgery, 37(3), 167–173. https://doi.org/10.1016/j.jcms.2008.10.008

Ionita, C. N., Mokin, M., Varble, N., Bednarek, D. R., Xiang, J., Snyder, K. V., Siddiqui, A. H., Levy, E. I., Meng, H., & Rudin, S. (2014). Challenges and limitations of patient-specific vascular phantom fabrication using 3D Polyjet printing. In R. C. Molthen & J. B. Weaver (Eds.), Proceedings of SPIE--the International Society for Optical Engineering (Vol. 9038, p. 90380M). Proc SPIE Int Soc Opt Eng. https://doi.org/10.1117/12.2042266

Langridge, B., Momin, S., Coumbe, B., Woin, E., Griffin, M., & Butler, P. (2018). Systematic Review of the Use of 3-Dimensional Printing in Surgical Teaching and Assessment. Journal of Surgical Education, 75(1), 209–221. https://doi.org/10.1016/j.jsurg.2017.06.033

Matsumoto, J. S., Morris, J. M., Foley, T. A., Williamson, E. E., Leng, S., McGee, K. P., Kuhlmann, J. L., Nesberg, L. E., & Vrtiska, T. J. (2015). Three-dimensional Physical Modeling: Applications and Experience at Mayo Clinic. RadioGraphics, 35(7), 1989–2006. https://doi.org/10.1148/rg.2015140260

Mitsouras, D., Liacouras, P., Imanzadeh, A., Giannopoulos, A. A., Cai, T., Kumamaru, K. K., George, E., Wake, N., Caterson, E. J., Pomahac, B., Ho, V. B., Grant, G. T., & Rybicki, F. J. (2015). Medical 3D Printing for the Radiologist. RadioGraphics, 35(7), 1965–1988. https://doi.org/10.1148/rg.2015140320

Miyazaki, T., Yamasaki, N., Tsuchiya, T., Matsumoto, K., Takagi, K., & Nagayasu, T. (2015). Airway Stent Insertion Simulated With a Three-Dimensional Printed Airway Model. The Annals of Thoracic Surgery, 99(1), e21–e23. https://doi.org/10.1016/j.athoracsur.2014.10.021

Parotto, M., Jiansen, J. Q., AboTaiban, A., Ioukhova, S., Agzamov, A., Cooper, R., O’Leary, G., & Meineri, M. (2017). Evaluation of a low-cost, 3D-printed model for bronchoscopy training. Anestezjologia Intensywna Terapia, 49(3), 189–197. https://doi.org/10.5603/AIT.a2017.0035

Pedersen, T. H., Gysin, J., Wegmann, A., Osswald, M., Ott, S. R., Theiler, L., & Greif, R. (2017). A randomised, controlled trial evaluating a low cost, 3D-printed bronchoscopy simulator. Anaesthesia, 72(8), 1005–1009. https://doi.org/10.1111/anae.13951

Petropolis, C., Kozan, D., & Sigurdson, L. (2015). Accuracy of medical models made by consumer-grade fused deposition modelling printers. Plastic Surgery, 23(2). https://doi.org/10.4172/plastic-surgery.1000912

Salmi, M., Paloheimo, K.-S., Tuomi, J., Wolff, J., & Mäkitie, A. (2013). Accuracy of medical models made by additive manufacturing (rapid manufacturing). Journal of Cranio-Maxillofacial Surgery, 41(7), 603–609. https://doi.org/10.1016/j.jcms.2012.11.041

Santana, R. R., Lozada, J., Kleinman, A., Al-Ardah, A., Herford, A., & Chen, J.-W. (2012). Accuracy of Cone Beam Computerized Tomography and a Three-Dimensional Stereolithographic Model in Identifying the Anterior Loop of the Mental Nerve: A Study on Cadavers. Journal of Oral Implantology, 38(6), 668–676. https://doi.org/10.1563/AAID-JOI-D-11-00130

Taft, R. M., Kondor, S., & Grant, G. T. (2011). Accuracy of rapid prototype models for head and neck reconstruction. The Journal of Prosthetic Dentistry, 106(6), 399–408. https://doi.org/10.1016/S0022-3913(11)60154-6

Wu, A.-M., Shao, Z.-X., Wang, J.-S., Yang, X.-D., Weng, W.-Q., Wang, X.-Y., Xu, H.-Z., Chi, Y.-L., & Lin, Z.-K. (2015). The Accuracy of a Method for Printing Three-Dimensional Spinal Models. PLOS ONE, 10(4), e0124291. https://doi.org/10.1371/journal.pone.0124291

Descargas

Publicado

20/07/2022

Cómo citar

TONETTO, M. S.; OLIVEIRA, H. G. de .; MULLER, A. F.; SANCHES, P. R. S.; FOLADOR, L.; TORRES, F. S.; GARCIA, T. S. Desarrollo de un modelo de vía aérea tridimensional personalizado. Research, Society and Development, [S. l.], v. 11, n. 9, p. e33111931721, 2022. DOI: 10.33448/rsd-v11i9.31721. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/31721. Acesso em: 5 jul. 2024.

Número

Sección

Ciencias de la salud