Efecto de la melatonina exógena sobre la composición lipídica de frutos posterior a la cosecha
DOI:
https://doi.org/10.33448/rsd-v11i10.32641Palabras clave:
Estrés; Antioxidante; Postcosecha; Calidad; Ácidos grasos.Resumen
La melatonina (N-acetil-5-metoxitriptamina) es una hormona que actúa sobre el crecimiento, desarrollo y respuesta al estrés de las plantas, potencia las enzimas antioxidantes, los antioxidantes no enzimáticos y las enzimas relacionadas con la reparación de proteínas oxidadas. Su estudio posee muchas incógnitas por explorar y responder. El suministro exógeno coordina otras moléculas señalizadoras para regular la maduración, senescencia, deterioración y daño postcosecha de los frutos a través de la diafonía con auxina, ácido abscísico, etileno, ácido gamma-aminobutírico, ácido jasmónico, óxido nítrico, especies reactivas de oxígeno y ácido salicílico. Los aceites vegetales extraídos de las frutas son excelentes fuentes de compuestos bioactivos que son importantes para mantener la salud, pero que pueden deteriorarse durante el almacenamiento. La melatonina induce la acumulación de ácidos grasos ayudando a conservar estas propiedades nutracéuticas por más tiempo. La metodología utilizada para la elaboración de esta revisión consistió en una investigación bibliográfica sistemática con la identificación de información referente a la influencia de la melatonina en las propiedades de los frutos después de la cosecha. La investigación tuvo como objetivo investigar la influencia de la melatonina exógena en el mantenimiento de las propiedades lipídicas de las frutas postcosecha. Una mejor comprensión de las actividades moleculares, bioquímicas y fisiológicas de la melatonina ayuda a desarrollar tecnologías de gestión postcosecha. Se concluye que la capa lipídica de las células de los frutos se conserva por un mayor período de tiempo por el aporte exógeno de melatonina.
Citas
Aghdam, M. S., Jannatizadeh, A., Nojadeh, M. S., &Ebrahimzadeh, A. (2019). Exogenous melatonin ameliorates chilling injury in cut anthurium flowers during low temperature storage. Postharvest Biology and Technology, 148, 184-191.
Aghdam, M. S., Luo, Z., Jannatizadeh, A., Sheikh-Assadi, M., Sharafi, Y., Farmani, B., & Razavi, F. (2019). Employing exogenous melatonin applying confers chilling tolerance in tomato fruits by upregulating ZAT2/6/12 giving rise to promoting endogenous polyamines, proline, and nitric oxide accumulation by triggering arginine pathway activity. Food Chemistry, 275, 549-556.
Arnao, M. B., & Hernández-Ruiz, J. (2019). Melatonin: a new plant hormone and/or a plant master regulator?. Trends in Plant Science, 24(1), 38-48.
Arnao, M. B., & Hernández-Ruiz, J. (2020). Is phytomelatonin a new plant hormone?. Agronomy, 10(1), 95.
Arnao, M. B., & Hernández‐Ruiz, J. (2021). Melatonin as a plant biostimulant in crops and during post‐harvest: a new approach is needed. Journal of the Science of Food and Agriculture, 101(13), 5297-5304.
Back, K., Tan, D. X., & Reiter, R. J. (2016). Melatonin biosynthesis in plants: multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts. Journal of Pineal Research, 61(4), 426-437.
Baysal, T., &Demirdöven, A. (2007). Lipoxygenase in fruits and vegetables: A review. Enzyme and microbial technology, 40(4), 491-496.
Cai, S. Y., Zhang, Y., Xu, Y. P., Qi, Z. Y., Li, M. Q., Ahammed, G. J., & Zhou, J. (2017). HsfA1a upregulates melatonin biosynthesis to confer cadmium tolerance in tomato plants. Journal of pineal research, 62(2), e12387.
Chapman, K. D., Dyer, J. M., & Mullen, R. T. (2013). Commentary: why don’t plant leaves get fat?. Plant Science, 207, 128-134.
Chen, Y., Zhang, Y., Nawaz, G., Zhao, C., Li, Y., Dong, T., & Xu, T. (2020). Exogenous melatonin attenuates post-harvest decay by increasing antioxidant activity in wax apple (Syzygiumsamarangense). Frontiers in plantscience, 1411.
Corpas, F. J., Rodríguez-Ruiz, M., Muñoz-Vargas, M. A., González-Gordo, S., Reiter, R. J., & Palma, J. M. (2022). Interactions of melatonin, ROS and NO during fruit ripening: An update and prospective view. Journal of Experimental Botany.
Di Bella, G., Mascia, F., Gualano, L., & Di Bella, L. (2013). Melatonin anticancer effects. International journal of molecular sciences, 14(2), 2410-2430.
Ding, F., Wang, M., Liu, B., & Zhang, S. (2017). Exogenous melatonin mitigates photoinhibition by accelerating non-photochemical quenching in tomato seedlings exposed to moderate light during chilling. Frontiers in Plant Science, 8, 244.
Dong, J., Kebbeh, M., Yan, R., Huan, C., Jiang, T., & Zheng, X. (2021). Melatonin treatment delays ripening in mangoes associated with maintaining the membrane integrity of fruit exocarp during postharvest. Plant Physiology and Biochemistry, 169, 22-28.
El-Mogy, M. M., Ludlow, R. A., Roberts, C., Müller, C. T., & Rogers, H. J. (2019). Postharvest exogenous melatonin treatment of strawberry reduces postharvest spoilage but affects components of the aroma profile. Journal of Berry Research, 9(2), 297-307.
Felipe, L. O., &Bicas, J. L. (2017). Terpenos, aromas e a química dos compostos naturais. Química Nova na Escola, 39(2), 120-130.
Feng, X., Wang, M., Zhao, Y., Han, P., & Dai, Y. (2014). Melatonin from different fruit sources, functional roles, and analytical methods. Trends in Food Science & Technology, 37(1), 21-31.
Foyer, C. H. (2018). Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environmental and experimental botany, 154, 134-142.
Gao, H., Lu, Z., Yang, Y., Wang, D., Yang, T., Cao, M., & Cao, W. (2018). Melatonin treatment reduces chilling injury in peach fruit through its regulation of membrane fatty acid contents and phenolic metabolism. Food Chemistry, 245, 659-666.
Hardeland, R., Pandi-Perumal, S. R., &Cardinali, D. P. (2006). Melatonin. The international journal of biochemistry & cell biology, 38(3), 313-316.
Hattori, A., Migitaka, H., Iigo, M., Itoh, M., Yamamoto, K., Ohtani-Kaneko, R., & Reiter, R. J. (1995). Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochemistry and molecular biology international, 35(3), 627-634.
Hu, W., Kong, H., Guo, Y., Zhang, Y., Ding, Z., Tie, W., & Guo, A. (2016). Comparative physiological and transcriptomic analyses reveal the actions of melatonin in the delay of postharvest physiological deterioration of cassava. Frontiers in Plant Science, 7, 736.
Ighodaro, O. M., &Akinloye, O. A. (2018). First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria journal of medicine, 54(4), 287-293.
Jannatizadeh, A. (2019). Exogenous melatonin applying confers chilling tolerance in pomegranate fruit during cold storage. ScientiaHorticulturae, 246, 544-549.
Jannatizadeh, A., Aghdam, M. S., Luo, Z., & Razavi, F. (2019). Impact of exogenous melatonin application on chilling injury in tomato fruits during cold storage. Food and bioprocess technology, 12(5), 741-750.
Kamel, B. S., &Kakuda, Y. (2008). Fatty acids in fruits and fruit products. Fatty Acid in Foods and Their Health Implication, 263.
Kobylińska, A., Borek, S., &Posmyk, M. M. (2018). Melatonin redirects carbohydrates metabolism during sugar starvation in plant cells. Journal of Pineal Research, 64(4), e12466.
Kołodziejczyk, I., &Posmyk, M. M. (2016). Melatonin-a new plant biostimulator?. Journal of Elementology, 21(4), 1187-1198.
Kong, X. M., Ge, W. Y., Wei, B. D., Zhou, Q., Zhou, X., Zhao, Y. B., & Ji, S. J. (2020). Melatonin ameliorates chilling injury in green bell peppers during storage by regulating membrane lipid metabolism and antioxidant capacity. Postharvest Biology and Technology, 170, 111315.
Lee, H. Y., Byeon, Y., & Back, K. (2014). Melatonin as a signal molecule triggering defense responses against pathogen attack in Arabidopsis and tobacco. Journal of Pineal Research, 57(3), 262-268.
Liu, C., Zheng, H., Sheng, K., Liu, W., & Zheng, L. (2018). Effects of melatonin treatment on the postharvest quality of strawberry fruit. Postharvest Biology and Technology, 139, 47-55.
Liu, J., Liu, H., Wu, T., Zhai, R., Yang, C., Wang, Z., ... & Xu, L. (2019). Effects of melatonin treatment of postharvest pear fruit on aromatic volatile biosynthesis. Molecules, 24(23), 4233.
Liu, J., Yue, R., Si, M., Wu, M., Cong, L., Zhai, R., & Xu, L. (2019). Effects of exogenous application of melatonin on quality and sugar metabolism in ‘Zaosu’pear fruit. Journal of Plant Growth Regulation, 38(3), 1161-1169.
Liu, J., Zhang, R., Sun, Y., Liu, Z., Jin, W., & Sun, Y. (2016). The beneficial effects of exogenous melatonin on tomato fruit properties. ScientiaHorticulturae, 207, 14-20.
Lopes, R. M., Silva, J. P. D., Vieira, R. F., Silva, D. B. D., Gomes, I. D. S., & Agostini-Costa, T. D. S. (2012). Composição de ácidos graxos em polpa de frutas nativas do cerrado. Revista Brasileira de Fruticultura, 34, 635-640.
Magalhães, H. C. R. (2017). Influência hormonal de Metil Jasmonato na biossíntese de compostos voláteis associados ao amadurecimento em tomate Grape (Solanumlycopersicum) e pimenta malagueta (Capsicum frutescens) (Doctoraldissertation, Universidade de São Paulo).
Medina-Santamarina, J., Zapata, P. J., Valverde, J. M., Valero, D., Serrano, M., & Guillén, F. (2021). Melatonin treatment of apricot trees leads to maintenance of fruit quality attributes during storage at chilling and non-chilling temperatures. Agronomy, 11(5), 917.
Mercolini, L., Mandrioli, R., & Raggi, M. A. (2012). Content of melatonin and other antioxidants in grape‐related foodstuffs: measurement using a MEPS‐HPLC‐F method. Journal of pineal research, 53(1), 21-28.
Michailidis, M., Tanou, G., Sarrou, E., Karagiannis, E., Ganopoulos, I., Martens, S., &Molassiotis, A. (2021). Pre-and post-harvest melatonin application boosted phenolic compounds accumulation and altered respiratory characters in sweet cherry fruit. Frontiers in nutrition, 8, 306.
Murch, S. J., & Simmons, C. B. (1997). Melatonin in feverfew and other medicinal plants. The Lancet, 350(9091), 1598-1599.
Murch, S. J., Alan, A. R., Cao, J., & Saxena, P. K. (2009). Melatonin and serotonin in flowers and fruits of Datura metel L. Journal of Pineal Research, 47(3), 277-283.
Nawaz, M. A., Huang, Y., Bie, Z., Ahmed, W., Reiter, R. J., Niu, M., & Hameed, S. (2016). Melatonin: current status and future perspectives in plant science. Frontiers in plant science, 6, 1230.
Onik, J. C., Wai, S. C., Li, A., Lin, Q., Sun, Q., Wang, Z., & Duan, Y. (2021). Melatonin treatment reduces ethylene production and maintains fruit quality in apple during postharvest storage. Food Chemistry, 337, 127753.
Pérez-Llamas, F., Hernández-Ruiz, J., Cuesta, A., Zamora, S., &Arnao, M. B. (2020). Development of a phytomelatonin-rich extract from cultured plants with excellent biochemical and functional properties as an alternative to synthetic melatonin. Antioxidants, 9(2), 158.
Pinho, P. G., Gonçalves, R. F., Valentão, P., Pereira, D. M., Seabra, R. M., Andrade, P. B., &Sottomayor, M. (2009). Volatile composition of Catharanthus roseus (L.) G. Don using solid-phase microextraction and gas chromatography/mass spectrometry. Journal of pharmaceutical and biomedical analysis, 49(3), 674-685.
Posmyk, M. M., &Janas, K. M. (2009). Melatonin in plants. Acta physiologiae plantarum, 31(1), 1-11.
Rambla, J. L., Tikunov, Y. M., Monforte, A. J., Bovy, A. G., &Granell, A. (2013). The expanded tomato fruit volatile landscape. Journal of Experimental Botany, 65(16), 4613-4623.
Rodriguez-Amaya, D. B. (2015). Food carotenoids: chemistry, biology and technology. John Wiley & Sons.
Schwab, W., Davidovich‐Rikanati, R., &Lewinsohn, E. (2008). Biosynthesis of plant‐derived flavor compounds. The plant journal, 54(4), 712-732.
Shang, F., Liu, R., Wu, W., Han, Y., Fang, X., Chen, H., & Gao, H. (2021). Effects of melatonin on the components, quality and antioxidant activities of blueberry fruits. LWT, 147, 111582.
Shi, H., Chen, K., Wei, Y., & He, C. (2016). Fundamental issues of melatonin-mediated stress signaling in plants. Frontiers in plant science, 7, 1124.
Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2017). Fisiologia e desenvolvimento vegetal. Artmed Editora.
Tan, D. X. (2015). Melatonin and plants. Journal of Experimental Botany, 66(3), 625-626.
Tan, D. X., Hardeland, R., Manchester, L. C., Paredes, S. D., Korkmaz, A., Sainz, R. M., & Reiter, R. J. (2010). The changing biological roles of melatonin during evolution: from an antioxidant to signals of darkness, sexual selection and fitness. Biological Reviews, 85(3), 607-623.
Tavanti, T. R., de Melo, A. A. R., Moreira, L. D. K., Sanchez, D. E. J., dos Santos Silva, R., da Silva, R. M., & Dos Reis, A. R. (2021). Micronutrient fertilization enhances ROS scavenging system for alleviation of abiotic stresses in plants. Plant Physiology and Biochemistry, 160, 386-396.
Wang, L., Luo, Z., Yang, M., Li, D., Qi, M., Xu, Y., & Li, L. I. (2020). Role of exogenous melatonin in table grapes: First evidence on contribution to the phenolics-oriented response. Food chemistry, 329, 127155.
Wang, S. Y., Shi, X. C., Wang, R., Wang, H. L., Liu, F., & Laborda, P. (2020). Melatonin in fruit production and postharvest preservation: A review. Food chemistry, 320, 126642.
Wang, T., Hu, M., Yuan, D., Yun, Z., Gao, Z., Su, Z., & Zhang, Z. (2020). Melatonin alleviates pericarp browning in litchi fruit by regulating membrane lipid and energy metabolisms. Postharvest Biology and Technology, 160, 111066.
Wang, X. (2009). The antiapoptotic activity of melatonin in neurodegenerative diseases. CNS neuroscience & therapeutics, 15(4), 345-357.
Wang, Z., Pu, H., Shan, S., Zhang, P., Li, J., Song, H., & Xu, X. (2021). Melatonin enhanced chilling tolerance and alleviated peel browning of banana fruit under low temperature storage. Postharvest Biology and Technology, 179, 111571.
Xu, T., Chen, Y., & Kang, H. (2019). Melatonin is a potential target for improving post-harvest preservation of fruits and vegetables. Frontiers in Plant Science, 1388.
Ze, Y., Gao, H., Li, T., Yang, B., & Jiang, Y. (2021). Insights into the roles of melatonin in maintaining quality and extending shelf life of postharvest fruits. Trends in Food Science & Technology, 109, 569-578.
Zhang, Z., Wang, T., Liu, G., Hu, M., Yun, Z., Duan, X., & Jiang, G. (2021). Inhibition of downy blight and enhancement of resistance in litchi fruit by postharvest application of melatonin. Food Chemistry, 347, 129009.
Zhao, Y., Tan, D. X., Lei, Q., Chen, H., Wang, L., Li, Q. T., & Kong, J. (2013). Melatonin and its potential biological functions in the fruits of sweet cherry. Journalof Pineal Research, 55(1), 79-88.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Marcos Fabian Sanabria Franco; Ricardo Alfredo Kluge
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.