Mapeo de investigación relacionada con vehículos de superficie no tripulados (USV)

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i10.32682

Palabras clave:

Cienciometría; Investigación Científica; Inteligencia artificial; VOSviewer.

Resumen

Los vehículos autónomos se han utilizado durante más de 60 años, con el avance de la tecnología y los nuevos enfoques, se desarrollaron vehículos de superficie no tripulados conocidos como USV (Unmanned Surface Vehichle). Este estudio tuvo como objetivo mapear cuantitativamente las producciones científicas relacionadas con los vehículos de superficie no tripulados (USV), a través del análisis cienciométrico, destacando artículos y artículos de revisión en esta área de conocimiento y demostrando el número de publicaciones hasta el año 2021. A partir de recopilaciones de datos en se realizaron las bases de datos Scopus y Web of Science, exclusión de documentos duplicados y análisis previos de títulos y resúmenes, generando un portafolio general de estudios con 1.190 publicaciones. El resultado de este mapeo mostró que la investigación está enfocada en tecnologías para la creación de vehículos de superficie no tripulados (USV) con recursos avanzados de control y automatización, y que continúan desarrollándose para la mejora de los equipos, también se puede ver que los la producción sobre el tema continuará creciendo ya que es un tema relativamente nuevo con grandes perspectivas para el desarrollo de nuevas investigaciones, métodos y aplicaciones. Finalmente, se espera que este estudio ayude en el mapeo de la investigación, especialmente en temas que aún no están generalizados en la ciencia, para aumentar la visibilidad y la comprensión de las innovaciones en investigación.

Citas

Balestrieri, E., Daponte, P., De Vito, L., & Lamonaca, F. (2021). Sensors and measurements for unmanned systems: An overview. Sensors, 21(4), 1518.

Bella, S., Belalem, G., Belbachir, A., & Benfriha, H. (2021). HMDCS-UV: A concept study of Hybrid Monitoring, Detection and Cleaning System for Unmanned Vehicles. Journal of Intelligent & Robotic Systems, 102(2), 1-35.

Board, N. S., & National Research Council. (2005). Autonomous vehicles in support of naval operations. National Academies Press.

Bramer, W. M., Giustini, D., de Jonge, G. B., Holland, L., & Bekhuis, T. (2016). De-duplication of database search results for systematic reviews in EndNote. Journal of the Medical Library Association: JMLA, 104(3), 240.

Caccia, M., Bibuli, M., Bono, R., Bruzzone, G., Bruzzone, G., & Spirandelli, E. (2007). Unmanned surface vehicle for coastal and protected waters applications: The Charlie project. Marine Technology Society Journal, 41(2), 62-71.

Díaz-Gutiérrez, C. E., Garduño-Gaffare, M. P., & Benítez-Read, J. S. (2011). Design of a Teleoperated Aquatic Vehicle for the Gauging of Water Bodies. Journal of applied research and technology, 9(3), 394-418.

Fan, Y. S., Sun, X. J., Wang, G. F., & Zhao, Y. (2016). On evolutionary genetic algorithm in path planning for a USV collision avoidance. ICIC Express Lett, 10(7), 1691-1696.

Fayaz, S., Parah, S. A., & Qureshi, G. J. (2022). Underwater object detection: architectures and algorithms–a comprehensive review. Multimedia Tools and Applications, 1-46.

Feng, X., Li, Y., & Xu, H. (2011). The next generation of unmanned marine vehicles dedicated to the 50 anniversary of the human world record diving 10912 m. Jiqiren(Robot), 33(1), 113-118.

Ferreira, Í. O., Neto, A. A., & Monteiro, C. S. (2017). O uso de embarcações não tripuladas em levantamentos batimétricos. Revista Brasileira de Cartografia, 68(10), 1885-1903.

Françolin, C. C., Rao, A. V., Duarte, C., & Martel, G. (2012). Optimal control of a surface vehicle to improve underwater vehicle network connectivity. Journal of Aerospace Computing, Information, and Communication, 9(1), 1-13.

Jesus, S. M., Coelho, E., Onofre, J., Picco, P., Soares, C., & Lopes, C. (2001, November). The INTIFANTE'00 sea trial: preliminary source localization and ocean tomography data analysis. In MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No. 01CH37295) (Vol. 1, pp. 40-45). IEEE.

Kitts, C., Mahacek, P., Adamek, T., Rasal, K., Howard, V., Li, S., ... & Hulme, S. (2012). Field operation of a robotic small waterplane area twin hull boat for shallow‐water bathymetric characterization. Journal of field Robotics, 29(6), 924-938.

Lee, Y. I., & Kim, Y. G. (2004, August). A collision avoidance system for autonomous ship using fuzzy relational products and COLREGs. In International Conference on Intelligent Data Engineering and Automated Learning (pp. 247-252). Springer, Berlin, Heidelberg.

Liu, J., Li, H., Luo, J., Xie, S., & Sun, Y. (2021). Estimating Obstacle Maps for USVs Based on a Multistage Feature Aggregation and Semantic Feature Separation Network. Journal of Intelligent & Robotic Systems, 102(1), 1-15.

Liu, Y., He, Y., & NOGUCHI, N. (2018). Development of a collision avoidance system for agricultural airboat based on laser sensor. Journal of Zhejiang University (Agriculture and Life Sciences), 44(4), 431-439.

Liu, Y., Wang, J., Shi, Y., He, Z., Liu, F., Kong, W., & He, Y. (2022). Unmanned airboat technology and applications in environment and agriculture. Computers and Electronics in Agriculture, 197, 106920.

Long, Y., Su, Y., Shi, B., Zuo, Z., & Li, J. (2021). A multi-subpopulation bacterial foraging optimisation algorithm with deletion and immigration strategies for unmanned surface vehicle path planning. Intelligent Service Robotics, 14(2), 303-312.

Mahé, A., Richard, A., Aravecchia, S., Geist, M., & Pradalier, C. (2021). Evaluation of prioritized deep system identification on a path following task. Journal of Intelligent & Robotic Systems, 101(4), 1-19.

Manley, J. E. (2008). Unmanned surface vehicles, 15 years of development. In OCEANS 2008 (pp. 1-4). IEEE.

Mu, D. D., Wang, G. F., & Fan, Y. S. (2018). Tracking control of podded propulsion unmanned surface vehicle with unknown dynamics and disturbance under input saturation. International Journal of Control, Automation and Systems, 16(4), 1905-1915.

Paravisi, M., H. Santos, D., Jorge, V., Heck, G., Gonçalves, L. M., & Amory, A. (2019). Unmanned surface vehicle simulator with realistic environmental disturbances. Sensors, 19(5), 1068.

Parra, M. R., Coutinho, R. X., & Pessano, E. F. C. (2019). Um breve olhar sobre a cienciometria: origem, evolução, tendências e sua contribuição para o ensino de ciências. Revista Contexto & Educação, 34(107), 126-141.

Pascoal, A., Oliveira, P., Silvestre, C., Sebastião, L., Rufino, M., Barroso, V., ... & Dando, P. (2000, September). Robotic ocean vehicles for marine science applications: the european asimov project. In OCEANS 2000 MTS/IEEE Conference and Exhibition. Conference Proceedings (Cat. No. 00CH37158) (Vol. 1, pp. 409-415). IEEE.

Pearson, D., An, E., Dhanak, M., von Ellenrieder, K., & Beaujean, P. (2014). High-level fuzzy logic guidance system for an unmanned surface vehicle (USV) tasked to perform autonomous launch and recovery (ALR) of an autonomous underwater vehicle (AUV) (pp. 1-15). IEEE.

Pizzani, L., da Silva, R. C., Bello, S. F., & Hayashi, M. C. P. I. (2012). A arte da pesquisa bibliográfica na busca do conhecimento. RDBCI: Revista Digital de Biblioteconomia e Ciência da Informação, 10(2), 53-66.

Qiu, B., Wang, G., Fan, Y., Mu, D., & Sun, X. (2019). Adaptive sliding mode trajectory tracking control for unmanned surface vehicle with modeling uncertainties and input saturation. Applied Sciences, 9(6), 1240.

Razera, J. C. C. (2016). Contribuições da cienciometria para a área brasileira de Educação em Ciências. Ciência & Educação (Bauru), 22, 557-560.

Santos, R. N. M. D., & Kobashi, N. Y. (2009). Bibliometria, cientometria, infometria: conceitos e aplicações.

Silva, I. S., Campopiano, F., Lopes, G. S., Uenojo, A. K., Silva, H. T., Pellini, E. L., ... & Barros, E. A. (2018). Development of a Trimaran ASV. IFAC-PapersOnLine, 51(29), 8-13.

Specht, M., Stateczny, A., Specht, C., Widźgowski, S., Lewicka, O., & Wiśniewska, M. (2021). Concept of an innovative autonomous unmanned system for bathymetric monitoring of shallow waterbodies (INNOBAT system). Energies, 14(17), 5370.

Spinak, E. (1998). Indicadores cienciométricos. Ciência da informação, 27.

Uchida, H. I. R. O. A. K. I., & Hunaki, T. (2019, August). Development of a remoto control type weeding machine with stirring chains for a paddy field. In 22nd International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, CLAWAR.

Van Eck, N. J., & Waltman, L. (2013). VOSviewer manual. Leiden: Univeristeit Leiden, 1(1), 1-53.

Vélez-Nicolás, M., García-López, S., Barbero, L., Ruiz-Ortiz, V., & Sánchez-Bellón, Á. (2021). Applications of unmanned aerial systems (UASs) in hydrology: A review. Remote Sensing, 13(7), 1359.

Zhao, Y., Sun, X., Wang, G., & Fan, Y. (2020). Adaptive backstepping sliding mode tracking control for underactuated unmanned surface vehicle with disturbances and input saturation. IEEE Access, 9, 1304-1312.

Wang, L., Wu, Q., Liu, J., Li, S., & Negenborn, R. R. (2019). State-of-the-art research on motion control of maritime autonomous surface ships. Journal of Marine Science and Engineering, 7(12), 438.

Zhao, Y., Qi, X., Ma, Y., Li, Z., Malekian, R., & Sotelo, M. A. (2020). Path following optimization for an underactuated USV using smoothly-convergent deep reinforcement learning. IEEE Transactions on Intelligent Transportation Systems, 22(10), 6208-6220.

Zhuang, J., Luo, J., & Liu, Y. (2020). A Locking Sweeping Method Based Path Planning for Unmanned Surface Vehicles in Dynamic Maritime Environments. Journal of Marine Science and Engineering, 8(11), 887.

Publicado

01/08/2022

Cómo citar

CANO, Éric V.; CANO, P. L. G.; ENCINA, C. C. C.; MIOTO, C. L.; RIBEIRO, A. A.; PARANHOS FILHO, A. C. Mapeo de investigación relacionada con vehículos de superficie no tripulados (USV). Research, Society and Development, [S. l.], v. 11, n. 10, p. e305111032682, 2022. DOI: 10.33448/rsd-v11i10.32682. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/32682. Acesso em: 17 jul. 2024.

Número

Sección

Revisiones