Desulfuración de biogás por proceso fotosintético con microalgas y absorción por lavado con agua

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i10.32891

Palabras clave:

Biogás; Desulfuración; Microalgas; Purificador.

Resumen

El biogás tiene un alto potencial para ser utilizado en la generación de electricidad y calor y como sustituto del combustible vehicular, favoreciendo la reducción de la dependencia de los combustibles fósiles. Para que el biogás se use de manera segura y efectiva, el H2S debe eliminarse a niveles tolerados para el propósito previsto. El objetivo de este trabajo fue evaluar el potencial de un lavador a escala piloto para promover la desulfuración de biogás mediante el proceso fotosintético con microalgas y el proceso de absorción por lavado con agua a presión atmosférica. El biogás crudo presentó concentración de H2S superior a 1.000 ppm, por análisis de cromatografía de gases. Para el sistema fotosintético con microalgas, la concentración de H2S en el biogás purificado se redujo a 11 ppm con 30 minutos de operación y a los 180 minutos se eliminó por completo, permaneciendo así hasta el final del ciclo diario de operación del sistema. Para el sistema de lavado de agua, a pesar de que la concentración de sulfuro de hidrógeno en el biogás purificado disminuyó considerablemente en el intervalo estudiado, se notó un aumento en el contenido con el tiempo, con lecturas que van desde 37,8 ppm a 188,4 ppm, lo que indica que puede haber total saturación de este componente, si el sistema funciona ininterrumpidamente. Así, la remoción de sulfuro de hidrógeno a través del proceso biológico con microalgas se realizó con éxito en un purificador a escala piloto, y su desempeño fue catalogado como prometedor, brindando las condiciones adecuadas para la desulfuración del biogás.

Citas

Ángeles, R., Arnaiz, E., Gutiérrez, J., Sepúlveda-Muñoz, C. A., Fernández-Ramos, O., Muñoz, R., & Lebrero, R. (2020). Optimization of photosynthetic biogas upgrading in closed photobioreactors combined with algal biomass production. Journal of Water Process Engineering, 38, 101554.

Awe, O. W., Zhao, Y., Nzihou, A., Minh, D. P., & Lyczko, N. (2017). A Review of Biogas Utilisation, Purification and Upgrading Technologies. Waste and Biomass Valorization 2017 8:2, 8(2), 267–283.

Aziz, M. M. A., Kassim, K. A., ElSergany, M., Anuar, S., Jorat, M. E., Yaacob, H., Ahsan, A., Imteaz, M. A., & Arifuzzaman. (2020). Recent advances on palm oil mill effluent (POME) pretreatment and anaerobic reactor for sustainable biogas production. Renewable and Sustainable Energy Reviews, 119, 106215.

Bahr, M., Díaz, I., Dominguez, A., González Sánchez, A., & Muñoz, R. (2014). Microalgal-biotechnology as a platform for an integral biogas upgrading and nutrient removal from anaerobic effluents. Environmental Science and Technology, 48(1), 573–581.

Budzianowski, W. M., Wylock, C. E., & Marciniak, P. A. (2017). Power requirements of biogas upgrading by water scrubbing and biomethane compression: Comparative analysis of various plant configurations. Energy Conversion and Management, 141, 2–19.

Cabrera-Codony, A., Santos-Clotas, E., Ania, C. O., & Martín, M. J. (2018). Competitive siloxane adsorption in multicomponent gas streams for biogas upgrading. Chemical Engineering Journal, 344, 565–573.

Cai, W. J., Huang, W. J., Luther, G. W., Pierrot, D., Li, M., Testa, J., Xue, M., Joesoef, A., Mann, R., Brodeur, J., Xu, Y. Y., Chen, B., Hussain, N., Waldbusser, G. G., Cornwell, J., & Michael Kemp, W. (2017). Redox reactions and weak buffering capacity lead to acidification in the Chesapeake Bay. Nature Communications 2017 8:1, 8(1), 1–12.

Cano, P. I., Colón, J., Ramírez, M., Lafuente, J., Gabriel, D., & Cantero, D. (2018). Life cycle assessment of different physical-chemical and biological technologies for biogas desulfurization in sewage treatment plants. Journal of Cleaner Production, 181, 663–674.

Cherosky, P., & Li, Y. (2013). Hydrogen sulfide removal from biogas by bio-based iron sponge. Biosystems Engineering, 114(1), 55–59.

Cristiano, D. M., de A. Mohedano, R., Nadaleti, W. C., de Castilhos Junior, A. B., Lourenço, V. A., Gonçalves, D. F. H., & Filho, P. B. (2020). H2S adsorption on nanostructured iron oxide at room temperature for biogas purification: Application of renewable energy. Renewable Energy, 154, 151–160.

Arespacochaga, N., Valderrama, C., Mesa, C., Bouchy, L., & Cortina, J. L. (2014). Biogas biological desulphurisation under extremely acidic conditions for energetic valorisation in Solid Oxide Fuel Cells. Chemical Engineering Journal, 255, 677–685.

Dewil, R., Appels, L., & Baeyens, J. (2006). Energy use of biogas hampered by the presence of siloxanes. Energy Conversion and Management, 47(13–14), 1711–1722.

Franco-Morgado, M., Alcántara, C., Noyola, A., Muñoz, R., & González-Sánchez, A. (2017). A study of photosynthetic biogas upgrading based on a high rate algal pond under alkaline conditions: Influence of the illumination regime. Science of The Total Environment, 592, 419–425.

Franco-Morgado, M., Tabaco-Angoa, T., Ramírez-García, M. A., & González-Sánchez, A. (2021). Strategies for decreasing the O2 content in the upgraded biogas purified via microalgae-based technology. Journal of Environmental Management, 279, 111813.

Franco, M. C., Buffing, M. F., Janssen, M., Lobato, C. V., & Wijffels, R. H. (2012). Performance of Chlorella sorokiniana under simulated extreme winter conditions. Journal of Applied Phycology, 24(4), 693–699.

Ghaib, K., & Ben-Fares, F. Z. (2018). Power-to-Methane: A state-of-the-art review. Renewable and Sustainable Energy Reviews, 81, 433–446.

Huttenhuis, P. J. G., Agrawal, N. J., Hogendoorn, J. A., & Versteeg, G. F. (2007). Gas solubility of H2S and CO2 in aqueous solutions of N-methyldiethanolamine. Journal of Petroleum Science and Engineering, 55(1–2), 122–134.

Jacob, J. M., Ravindran, R., Narayanan, M., Samuel, S. M., Pugazhendhi, A., & Kumar, G. (2020). Microalgae: A prospective low cost green alternative for nanoparticle synthesis. Current Opinion in Environmental Science and Health.

Jiang, X., Wu, J., Jin, Z., Yang, S., & Shen, L. (2020). Enhancing the removal of H2S from biogas through refluxing of outlet gas in biological bubble-column. Bioresource Technology, 299, 122621.

Konrad, O., Akwa, J. V., Koch, F. F., Tonetto, M., & Jaqueline, L. (2016). Quantification and characterization of the production of biogas from blends of agro-industrial wastes in a large-scale demonstration plant. Acta Scientiarum. Technology, 38(4), 415–421.

Lebrero, R., Toledo-Cervantes, A., Muñoz, R., del Nery, V., & Foresti, E. (2016). Biogas upgrading from vinasse digesters: a comparison between an anoxic biotrickling filter and an algal-bacterial photobioreactor. Journal of Chemical Technology & Biotechnology, 91(9), 2488–2495.

Li, L., Zhang, J., Lin, J., & Liu, J. (2015). Biological technologies for the removal of sulfur containing compounds from waste streams: bioreactors and microbial characteristics. World Journal of Microbiology and Biotechnology 2015 31:10, 31(10), 1501–1515.

Li, Y., Zhang, W., & Xu, J. (2014). Siloxanes removal from biogas by a lab-scale biotrickling filter inoculated with Pseudomonas aeruginosa S240. Journal of Hazardous Materials, 275, 175–184.

Meier, L., Barros, P., Torres, A., Vilchez, C., & Jeison, D. (2017). Photosynthetic biogas upgrading using microalgae: Effect of light/dark photoperiod. Renewable Energy, 106, 17–23.

Meier, L., Stará, D., Bartacek, J., & Jeison, D. (2018). Removal of H2S by a continuous microalgae-based photosynthetic biogas upgrading process. Process Safety and Environmental Protection, 119, 65–68.

Miyawaki, B., Mariano, A. B., Vargas, J. V. C., Balmant, W., Defrancheschi, A. C., Corrêa, D. O., Santos, B., Selesu, N. F. H., Ordonez, J. C., & Kava, V. M. (2021). Microalgae derived biomass and bioenergy production enhancement through biogas purification and wastewater treatment. Renewable Energy, 163, 1153–1165.

Muñoz, R., Meier, L., Diaz, I., & Jeison, D. (2015). A review on the state-of-the-art of physical/chemical and biological technologies for biogas upgrading. Reviews in Environmental Science and Biotechnology, 14(4), 727–759.

Noorain, R., Kindaichi, T., Ozaki, N., Aoi, Y., & Ohashi, A. (2019a). Integrated biological–physical process for biogas purification effluent treatment. Journal of Environmental Sciences, 83, 110–122.

Noorain, R., Kindaichi, T., Ozaki, N., Aoi, Y., & Ohashi, A. (2019b). Biogas purification performance of new water scrubber packed with sponge carriers. Journal of Cleaner Production, 214, 103–111.

Pipatmanomai, S., Kaewluan, S., & Vitidsant, T. (2009). Economic assessment of biogas-to-electricity generation system with H2S removal by activated carbon in small pig farm. Applied Energy, 86(5), 669–674.

Popat, S. C., & Deshusses, M. A. (2008). Biological removal of siloxanes from landfill and digester gases: Opportunities and challenges. Environmental Science and Technology, 42(22), 8510–8515.

Posadas, E., Serejo, M. L., Blanco, S., Pérez, R., García-Encina, P. A., & Muñoz, R. (2015). Minimization of biomethane oxygen concentration during biogas upgrading in algal–bacterial photobioreactors. Algal Research, 12, 221–229.

Posadas, E., Marín, D., Blanco, S., Lebrero, R., & Muñoz, R. (2017). Simultaneous biogas upgrading and centrate treatment in an outdoors pilot scale high rate algal pond. Bioresource Technology, 232, 133–141.

Ras, M., Steyer, J. P., & Bernard, O. (2013). Temperature effect on microalgae: a crucial factor for outdoor production. Reviews in Environmental Science and Bio/Technology 2013 12:2, 12(2), 153–164.

Rasi, S., Läntelä, J., & Rintala, J. (2011). Trace compounds affecting biogas energy utilisation – A review. Energy Conversion and Management, 52(12), 3369–3375.

Rodero, M. del R., Lebrero, R., Serrano, E., Lara, E., Arbib, Z., García-Encina, P. A., & Muñoz, R. (2019). Technology validation of photosynthetic biogas upgrading in a semi-industrial scale algal-bacterial photobioreactor. Bioresource Technology, 279, 43–49.

Rodero, M. del R., Posadas, E., Toledo-Cervantes, A., Lebrero, R., & Muñoz, R. (2018). Influence of alkalinity and temperature on photosynthetic biogas upgrading efficiency in high rate algal ponds. Algal Research, 33, 284–290.

Ryckebosch, E., Drouillon, M., & Vervaeren, H. (2011). Techniques for transformation of biogas to biomethane. Biomass and Bioenergy, 35(5), 1633–1645.

Salama, E. S., Hwang, J. H., El-Dalatony, M. M., Kurade, M. B., Kabra, A. N., Abou-Shanab, R. A. I., Kim, K. H., Yang, I. S., Govindwar, S. P., Kim, S., & Jeon, B. H. (2018). Enhancement of microalgal growth and biocomponent-based transformations for improved biofuel recovery: A review. Bioresource Technology, 258, 365–375.

Schweigkofler, M., & Niessner, R. (2001). Removal of siloxanes in biogases. Journal of Hazardous Materials, 83(3), 183–196.

Serejo, M. L., Posadas, E., Boncz, M. A., Blanco, S., García-Encina, P., & Muñoz, R. (2015). Influence of biogas flow rate on biomass composition during the optimization of biogas upgrading in microalgal-bacterial processes. Environmental Science and Technology, 49(5), 3228–3236.

Summerfelt, S. T., Zühlke, A., Kolarevic, J., Reiten, B. K. M., Selset, R., Gutierrez, X., & Terjesen, B. F. (2015). Effects of alkalinity on ammonia removal, carbon dioxide stripping, and system pH in semi-commercial scale water recirculating aquaculture systems operated with moving bed bioreactors. Aquacultural Engineering, 65, 46–54.

Toledo-Cervantes, A., Madrid-Chirinos, C., Cantera, S., Lebrero, R., & Muñoz, R. (2017). Influence of the gas-liquid flow configuration in the absorption column on photosynthetic biogas upgrading in algal-bacterial photobioreactors. Bioresource Technology, 225, 336–342.

Tu, X., Li, J., Feng, R., Sun, G., & Guo, J. (2016). Comparison of Removal Behavior of Two Biotrickling Filters under Transient Condition and Effect of pH on the Bacterial Communities. PLOS ONE, 11(5), e0155593.

Valle, A., Fernández, M., Ramírez, M., Rovira, R., Gabriel, D., & Cantero, D. (2018). A comparative study of eubacterial communities by PCR-DGGE fingerprints in anoxic and aerobic biotrickling filters used for biogas desulfurization. Bioprocess and Biosystems Engineering 2018 41:8, 41(8), 1165–1175.

Van der Heyden, C., Vanthillo, B., Pieters, J. G., Demeyer, P., & Volcke, E. I. P. (2016). Mechanistic Modeling of Pollutant Removal, Temperature, and Evaporation in Chemical Air Scrubbers. Chemical Engineering & Technology, 39(10), 1785–1796.

Vikrant, K., Kailasa, S. K., Tsang, D. C. W., Lee, S. S., Kumar, P., Giri, B. S., Singh, R. S., & Kim, K. H. (2018). Biofiltration of hydrogen sulfide: Trends and challenges. Journal of Cleaner Production, 187, 131–147.

Xu, M., Xue, Z., Sun, S., Zhao, C., Liu, J., Liu, J., & Zhao, Y. (2020). Co-culturing microalgae with endophytic bacteria increases nutrient removal efficiency for biogas purification. Bioresource Technology, 314, 123766.

Zhang, Y., Oshita, K., Kusakabe, T., Takaoka, M., Kawasaki, Y., Minami, D., & Tanaka, T. (2020). Simultaneous removal of siloxanes and H2S from biogas using an aerobic biotrickling filter. Journal of Hazardous Materials, 391, 122187.

Zhou, Q., Liang, H., Yang, S., & Jiang, X. (2015). The Removal of Hydrogen Sulfide from Biogas in a Microaerobic Biotrickling Filter Using Polypropylene Carrier as Packing Material. Applied Biochemistry and Biotechnology 2015 175:8, 175(8), 3763–3777.

Publicado

05/08/2022

Cómo citar

CASTRO, A. A.; JUNGES, E. L. .; MARDER, M.; MÖRS, J.; KONRAD, O. Desulfuración de biogás por proceso fotosintético con microalgas y absorción por lavado con agua. Research, Society and Development, [S. l.], v. 11, n. 10, p. e388111032891, 2022. DOI: 10.33448/rsd-v11i10.32891. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/32891. Acesso em: 23 nov. 2024.

Número

Sección

Ingenierías