Uso de proteínas recombinantes en el diagnóstico de infecciones de transmisión sexual: revisión sistemática y metanálisis
DOI:
https://doi.org/10.33448/rsd-v11i10.32970Palabras clave:
ITS; Revisión sistemática; Metanálisis; Diagnóstico.Resumen
La presente revisión sistemática y metanálisis tuvo como objetivo investigar el uso de proteínas recombinantes para diagnosticar las ITS y evaluar el rendimiento de las pruebas identificadas. Se realizaron búsquedas en las bases de datos SciELO, PubMed, CAPES Journal Portal y LILACS, según el protocolo PRISMA. Un estudio se consideró elegible si cumplía con los criterios previamente definidos. El riesgo de sesgo del estudio se evaluó según el protocolo QUADAS-2. El metanálisis se realizó con base en el modelo de efectos aleatorios y la heterogeneidad se cuantificó mediante la estadística I². Se seleccionaron un total de 1.355 estudios, 30 de los cuales eran relevantes para lo siguiente: virus de la inmunodeficiencia humana (12/30), Treponema pallidum (10/30), Chlamydia trachomatis (3/30), virus del herpes simple (HSV, 2/ 30), Trichomonas vaginalis (2/30) y HSV/citomegalovirus (1/30). Las principales pruebas serológicas fueron ELISA e inmunocromatografía. El riesgo de sesgo fue bajo para la mayoría de los estudios incluidos. Según cada microorganismo, el metanálisis reveló sensibilidad y especificidad satisfactorias para las pruebas analizadas. Los hallazgos refuerzan la relevancia de las pruebas diagnósticas basadas en proteínas recombinantes como alternativas viables para su producción e inclusión en la práctica clínica. Número de registro PROSPERO: CRD42020206331.
Citas
Alderete, J. F. (2017). Epitopes within recombinant α-actinin protein is serodiagnostic target for Trichomonas vaginalis sexually transmitted infections. Heliyon, 3(1), e00237. https://doi.org/10.1016/j.heliyon.2017.e00237
Alderete, John F. (2020). Advancing Prevention of STIs by Developing Specific Serodiagnostic Targets: Trichomonas vginalis as a Model. International Journal of Environmental Research and Public Health, 17(16). https://doi.org/10.3390/ijerph17165783
AnandaRao, R., Swaminathan, S., Fernando, S., Jana, A. M., & Khanna, N. (2005). A custom-designed recombinant multiepitope protein as a dengue diagnostic reagent. Protein Expression and Purification, 41(1), 136–147. https://doi.org/10.1016/j.pep.2005.01.009
Arshad, Z., Alturkistani, A., Brindley, D., Lam, C., Foley, K., & Meinert, E. (2019). Tools for the Diagnosis of Herpes Simplex Virus 1/2: Systematic Review of Studies Published Between 2012 and 2018. JMIR Public Health and Surveillance, 5(2), e14216. https://doi.org/10.2196/14216
Ault, K. A. (2006). Epidemiology and natural history of human papillomavirus infections in the female genital tract. Infectious Diseases in Obstetrics and Gynecology, 2006(Figure 1), 1–5. https://doi.org/10.1155/IDOG/2006/40470
Balduzzi, S., Rücker, G., & Schwarzer, G. (2019). How to perform a meta-analysis with R: A practical tutorial. Evidence-Based Mental Health, 22(4), 153–160. https://doi.org/10.1136/ebmental-2019-300117
Barbosa, M. S., Alves, R. P. dos S., Rezende, I. de S., Pereira, S. S., Campos, G. B., Freitas, L. M., Chopra-Dewasthaly, R., Ferreira, L. C. de S., Guimarães, A. M. de S., Marques, L. M., & Timenetsky, J. (2020). Novel antigenic proteins of Mycoplasma agalactiae as potential vaccine and serodiagnostic candidates. Veterinary Microbiology, 251(May). https://doi.org/10.1016/j.vetmic.2020.108866
Bbosa, N., Kaleebu, P., & Ssemwanga, D. (2019). HIV subtype diversity worldwide. Current Opinion in HIV and AIDS, 14(3), 153–160. https://doi.org/10.1097/COH.0000000000000534
Borges, L. S. R. (2016). Medidas de Acurácia diagnóstica na pesquisa cardiovascular. International Journal of Cardiovascular Sciences, 29(3), 218–222. http://www.onlineijcs.org/english/sumario/29/pdf/v29n3a09.pdf
BRASIL, M. da S. (2020). Boletim Epidemiológico HIV / Aids | 2020. Secretaria de Vigilância Em Saúde, 1, 68.
Bump, J., & Salisbury, N. (2013). S14.3 Explaining Inaction: The Politics of Congenital Syphilis and the Global Health Agenda. Sexually Transmitted Infections, 89(Suppl 1), A21.2-A21. https://doi.org/10.1136/sextrans-2013-051184.0067
Cadosch, D., Garcia, V., Jensen, J. S., Low, N., & Althaus, C. L. (2020). Understanding the spread of de novo and transmitted macrolide-resistance in Mycoplasma genitalium. PeerJ, 2020(4), 1–16. https://doi.org/10.7717/peerj.8913
Cai, Q., Wang, H., Huang, L., Yan, H., Zhu, W., & Tang, S. (2019). Characterization of HIV-1 genotype specific antigens for the detection of recent and long-term HIV-1 infection in China. Virus Research, 264, 16–21. https://doi.org/10.1016/j.virusres.2019.02.010
Cina, M., Baumann, L., Egli-gany, D., Halbeisen, F. S., Ali, H., Scott, P., & Low, N. (2019). Mycoplasma genitalium incidence, persistence, concordance between partners and progression: systematic review and meta-analysis. Sex Transm Infect., 95, 328–335. https://doi.org/10.1136/sextrans-2018-053823
Curtis, K. A., Kennedy, M. S., Charurat, M., Nasidi, A., Delaney, K., Spira, T. J., & Owen, S. M. (2012). Development and characterization of a bead-based, multiplex assay for estimation of recent HIV type 1 infection. AIDS Research and Human Retroviruses, 28(2), 188–197. https://doi.org/10.1089/aid.2011.0037
Daskalakis, D. (2011). HIV diagnostic testing: Evolving technology and testing strategies. Topics in Antiviral Medicine, 19(1), 18–22.
de Haro-Cruz, M. J., Guadarrama-Macedo, S. I., López-Hurtado, M., Escobedo-Guerra, M. R., & Guerra-Infante, F. M. (2019). Obtaining an ELISA test based on a recombinant protein of Chlamydia trachomatis. International Microbiology : The Official Journal of the Spanish Society for Microbiology, 22(4), 471–478. https://doi.org/10.1007/s10123-019-00074-4
Drancourt, M., Michel-lepage, A., & Boyer, S. (2016). The Point-of-Care Laboratory in Clinical Microbiology. 29(3), 429–447. https://doi.org/10.1128/CMR.00090-15.Address
Duarte, L. S., Barsé, L. Q., Dalberto, P. F., da Silva, W. T. S., Rodrigues, R. C., Machado, P., Basso, L. A., Bizarro, C. V., & Ayub, M. A. Z. (2020). Cloning and expression of the Bacillus amyloliquefaciens transglutaminase gene in E. coli using a bicistronic vector construction. Enzyme and Microbial Technology, 134, 109468. https://doi.org/10.1016/j.enzmictec.2019.109468
Gallerano, D., Ndlovu, P., Makupe, I., Focke-Tejkl, M., Fauland, K., Wollmann, E., Puchhammer-Stöckl, E., Keller, W., Sibanda, E., & Valenta, R. (2015). Comparison of the specificities of IgG, IgG-subclass, IgA and IgM reactivities in African and European HIV-infected individuals with an HIV-1 clade C proteome-based array. PLoS ONE, 10(2), 1–19. https://doi.org/10.1371/journal.pone.0117204
Ghosn, J., Taiwo, B., Seedat, S., Autran, B., & Katlama, C. (2018). Hiv. Lancet (London, England), 392(10148), 685–697. https://doi.org/10.1016/S0140-6736(18)31311-4
Granade, T. C., Nguyen, S., Kuehl, D. S., & Parekh, B. S. (2013a). Development of a novel rapid HIV test for simultaneous detection of recent or long-term HIV type 1 infection using a single testing device. AIDS Research and Human Retroviruses, 29(1), 61–67. https://doi.org/10.1089/aid.2012.0121
Granade, T. C., Nguyen, S., Kuehl, D. S., & Parekh, B. S. (2013b). Development of a novel rapid HIV test for simultaneous detection of recent or long-term HIV type 1 infection using a single testing device. AIDS Research and Human Retroviruses, 29(1), 61–67. https://doi.org/10.1089/aid.2012.0121
Herbison, P., Hay-Smith, J., & Gillespie, W. J. (2011). Meta-analyses of small numbers of trials often agree with longer-term results. Journal of Clinical Epidemiology, 64(2), 145–153. https://doi.org/10.1016/j.jclinepi.2010.02.017
Herbst De Cortina, S., Bristow, C. C., Joseph Davey, D., & Klausner, J. D. (2016). A Systematic Review of Point of Care Testing for Chlamydia trachomatis, Neisseria gonorrhoeae, and Trichomonas vaginalis. Infectious Diseases in Obstetrics and Gynecology, 2016. https://doi.org/10.1155/2016/4386127
Hokynar, K., Korhonen, S., Norja, P., Paavonen, J., & Puolakkainen, M. (2017). Antibody to Chlamydia trachomatis proteins, TroA and HtrA, as a biomarker for Chlamydia trachomatis infection. European Journal of Clinical Microbiology & Infectious Diseases : Official Publication of the European Society of Clinical Microbiology, 36(1), 49–56. https://doi.org/10.1007/s10096-016-2769-7
Horner, P. J., & Martin, D. H. (2017). Mycoplasma genitalium Infection in Men. J Infect Dis, 216(Suppl 2), 396–405. https://doi.org/10.1093/infdis/jix145
Irwig, L., Tosteson, A. N. A., Gatsonis, C., Lau, J., Colditz, G., Chalmers, T. C., & Mosteller, F. (1994). Guidelines for meta-analyses evaluating diagnostic tests. Annals of Internal Medicine, 120(8), 667–676. https://doi.org/10.7326/0003-4819-120-8-199404150-00008
Jia, B., & Jeon, C. O. (2016). High-throughput recombinant protein expression in Escherichia coli: Current status and future perspectives. Open Biology, 6(8). https://doi.org/10.1098/rsob.160196
Jiang, C., Xiao, J., Xie, Y., Xiao, Y., Wang, C., Kuang, X., Xu, M., Li, R., Zeng, T., Liu, S., Yu, J., Zhao, F., & Wu, Y. (2016). Evaluation of FlaB1, FlaB2, FlaB3, and Tp0463 of Treponema pallidum for serodiagnosis of syphilis. Diagnostic Microbiology and Infectious Disease, 84(2), 105–111. https://doi.org/10.1016/j.diagmicrobio.2015.10.005
Jiang, C., Zhao, F., Xiao, J., Zeng, T., Yu, J., Ma, X., Wu, H., & Wu, Y. (2013). Evaluation of the recombinant protein TpF1 of Treponema pallidum for serodiagnosis of syphilis. Clinical and Vaccine Immunology, 20(10), 1563–1568. https://doi.org/10.1128/CVI.00122-13
Jonathan J Deeks, Julian PT Higgins, D. G. A. on behalf of the C. S. M. G. (2020). Chapter 10: Analysing data and undertaking meta-analyses. In Cochrane Handbook for Systematic Reviews of Interventions version 6.1. https://training.cochrane.org/handbook/current
Juneyoung Lee, Kyung Won Kim, Sang Hyun Choi, J. H., & Seong Ho Park. (2015). Systematic Review and Meta-Analysis of Studies Evaluating Diagnostic Test Accuracy: A Practical Review for Clinical Researchers–Part II. Statistical Methods of Meta-Analysis. Korean Journal of Radiology, 16(6), 1188–1196. https://doi.org/10.3348/kjr.2015.16.6.1175
K. Shamsur Rahman, a Toni Darville, b Harold C. Wiesenfeld, c Sharon L. Hillier, c B. K. (2018). Mixed Chlamydia trachomatis Peptide Antigens Provide a Specific and Sensitive Single-Well Colorimetric Enzyme-Linked Immunosorbent Assay for Detection of Human Anti-C. trachomatis Antibodies. Clinical Science and Epidemiology, 3(6), 1–20.
Korshun, L., Vudmaska, M., Moysa, L., Kovtonjuk, G., Mikhalap, S., Ganova, L., & Spivak, N. (2013). Recombinant glycoprotein G analog for determination of specific immunoglobulins to herpes simplex virus type 2 by ELISA. Journal of Virological Methods, 194(1–2), 67–73. https://doi.org/10.1016/j.jviromet.2013.07.060
Lin, L. R., Fu, Z. G., Dan, B., Jing, G. J., Tong, M. L., Chen, D. T., Yu, Y., Zhang, C. G., Yang, T. C., & Zhang, Z. Y. (2010). Development of a colloidal gold-immunochromatography assay to detect immunoglobulin G antibodies to Treponema pallidum with TPN17 and TPN47. Diagnostic Microbiology and Infectious Disease, 68(3), 193–200. https://doi.org/10.1016/j.diagmicrobio.2010.06.019
Lin, L. R., Tong, M. L., Fu, Z. G., Dan, B., Zheng, W. H., Zhang, C. G., Yang, T. C., & Zhang, Z. Y. (2011). Evaluation of a colloidal gold immunochromatography assay in the detection of Treponema pallidum specific IgM antibody in syphilis serofast reaction patients: A serologic marker for the relapse and infection of syphilis. Diagnostic Microbiology and Infectious Disease, 70(1), 10–16. https://doi.org/10.1016/j.diagmicrobio.2010.11.015
Lisboa Bastos, M., Tavaziva, G., Abidi, S. K., Campbell, J. R., Haraoui, L. P., Johnston, J. C., Lan, Z., Law, S., MacLean, E., Trajman, A., Menzies, D., Benedetti, A., & Khan, F. A. (2020). Diagnostic accuracy of serological tests for covid-19: Systematic review and meta-analysis. The BMJ, 370. https://doi.org/10.1136/bmj.m2516
Liu, J., Chen, X., Wang, J., Wu, F., Zhang, J., Dong, J., Zhang, H., Liu, X., Hu, N., Wu, J., Zhang, L., Cheng, W., & Zhang, C. (2021). Prediction and identi fi cation of CD4+ T cell epitope for the protective antigens of Mycobacterium tuberculosis. Medicine, 6(August 2020).
Liu, Y., Yu, F., Huang, H., & Han, J. (2013). Development of Recombinant Antigen Array for Simultaneous Detection of Viral Antibodies. PLoS ONE, 8(9), 1–9. https://doi.org/10.1371/journal.pone.0073842
Long, F.-Q., Zhang, J.-P., Shang, G.-D., Shang, S.-X., Gong, K.-L., & Wang, Q.-Q. (2012). Seroreactivity and immunogenicity of Tp0965, a hypothetical membrane protein of Treponema pallidum. Chinese Medical Journal, 125(11), 1920–1924.
Ma, Y., Ni, C., Dzakah, E. E., Wang, H., Kang, K., Tang, S., Wang, J., & Wang, J. (2016). Development of Monoclonal Antibodies against HIV-1 p24 Protein and Its Application in Colloidal Gold Immunochromatographic Assay for HIV-1 Detection. BioMed Research International, 2016, 1–6. https://doi.org/10.1155/2016/6743904
Moshgabadi, N., Galli, R. A., Daly, A. C., Ko, S. M. S., Westgard, T. E., Bulpitt, A. F., & Shackleton, C. R. (2015a). Sensitivity of a rapid point of care assay for early HIV antibody detection is enhanced by its ability to detect HIV gp41 IgM antibodies. Journal of Clinical Virology, 71, 67–72. https://doi.org/10.1016/j.jcv.2015.08.005
Moshgabadi, N., Galli, R. A., Daly, A. C., Ko, S. M. S., Westgard, T. E., Bulpitt, A. F., & Shackleton, C. R. (2015b). Sensitivity of a rapid point of care assay for early HIV antibody detection is enhanced by its ability to detect HIV gp41 IgM antibodies. Journal of Clinical Virology : The Official Publication of the Pan American Society for Clinical Virology, 71, 67–72. https://doi.org/10.1016/j.jcv.2015.08.005
Nodjikouambaye, Z. A., Compain, F., Sadjoli, D., Bouassa, R. M., Péré, H., Veyer, D., Robin, L., Adawaye, C., Tonen-wolyec, S., Moussa, A. M., Koyalta, D., & Belec, L. (2019). Accuracy of Curable Sexually Transmitted Infections and Genital Mycoplasmas Screening by Multiplex Real-Time PCR Using a Self-Collected Veil among Adult Women in Sub-Saharan Africa. Infectious Diseases in Obstetrics and Gynecology, 2019, 2–15. https://doi.org/10.1155/2019/8639510
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. The BMJ, 372. https://doi.org/10.1136/bmj.n71
Parpia, Z. A., Elghanian, R., Nabatiyan, A., Hardie, D. R., & Kelso, D. M. (2010). p24 antigen rapid test for diagnosis of acute pediatric HIV infection. Journal of Acquired Immune Deficiency Syndromes (1999), 55(4), 413–419. https://doi.org/10.1097/QAI.0b013e3181f1afbc
Peeling, R. W., Holmes, K. K., Mabey, D., & Ronald, A. (2006). Rapid tests for sexually transmitted infections (STIs): The way forward. Sexually Transmitted Infections, 82(SUPPL. 5), 1–6. https://doi.org/10.1136/sti.2006.024265
Peeling, R. W., Mabey, D., Kamb, M. L., Chen, X., David, J., Benzaken, A. S., Street, K., Hepatitis, V., Union, P., & Hepatitis, V. (2018). Syphilis. Nat Rev Dis Primers., 3(17073), 49. https://doi.org/10.1038/nrdp.2017.73.Syphilis
Penny F. Whiting, Anne WS Rutjes, Marie E. Westwood, Susan Mallett, Jonathan J. Deeks, Johannes B. Reitsma, MD, Mariska MG Leeflang, J. A. S. P. M. B. (2011). QUADAS-2: A revised tool fot the quality assessment of Diagnostic Accuracy Studies. Annals of Internal Medicine, 154(4), 253–260.
Persson, K. (2002). The role of serology, antibiotic susceptibility testing and serovar determination in genital chlamydial infections. Best Practice & Research. Clinical Obstetrics & Gynaecology, 16(6), 801–814. https://doi.org/10.1053/beog.2002.0321
Petra Macaskill, Constantine Gatsonis, J. D., & Roger Harbord, Y. T. (2010). Chapter 10 Analysing and Presenting Results (T. C. Collaboration (ed.); 1st ed.).
Pfeilsticker, J. A., Umeda, A., Farrow, B., Hsueh, C. L., Deyle, K. M., Kim, J. T., Lai, B. T., & Heath, J. R. (2013). A cocktail of thermally stable, chemically synthesized capture agents for the efficient detection of anti-gp41 antibodies from human sera. PloS One, 8(10), e76224. https://doi.org/10.1371/journal.pone.0076224
Phang Romero Casas, C., Martyn-St James, M., Hamilton, J., Marinho, D. S., Castro, R., & Harnan, S. (2018). Rapid diagnostic test for antenatal syphilis screening in low-income and middle-income countries: a systematic review and meta-analysis. BMJ Open, 8(2), e018132. https://doi.org/10.1136/bmjopen-2017-018132
Philipp Doebler. (2020). mada: Meta-Analysis of Diagnostic Accuracy. r-forge.r-project.org/projects/mada/
Reiman, M. P., Thorborg, K., Goode, A. P., Cook, C. E., Weir, A., & Hölmich, P. (2017). Diagnostic Accuracy of Imaging Modalities and Injection Techniques for the Diagnosis of Femoroacetabular Impingement/Labral Tear: A Systematic Review with Meta-analysis. American Journal of Sports Medicine, 45(11), 2665–2677. https://doi.org/10.1177/0363546516686960
Rikhtegaran Tehrani, Z., Azadmanesh, K., Mostafavi, E., Soori, S., Azizi, M., & Khabiri, A. (2015a). Development of an integrase-based ELISA for specific diagnosis of individuals infected with HIV. Journal of Virological Methods, 215–216, 61–66. https://doi.org/10.1016/j.jviromet.2015.02.013
Rikhtegaran Tehrani, Z., Azadmanesh, K., Mostafavi, E., Soori, S., Azizi, M., & Khabiri, A. (2015b). Development of an integrase-based ELISA for specific diagnosis of individuals infected with HIV. Journal of Virological Methods, 215–216, 61–66. https://doi.org/10.1016/j.jviromet.2015.02.013
Runina, A. V, Katunin, G. L., Filippova, M. A., Zatevalov, A. M., Kubanov, A. A., & Deryabin, D. G. (2018). Immunochip for Syphilis Serodiagnostics with the Use of Extended Array of Treponema pallidum Recombinant Antigens. Bulletin of Experimental Biology and Medicine, 165(6), 767–771. https://doi.org/10.1007/s10517-018-4261-0
Sanchez-Trincado, J. L., Gomez-Perosanz, M., & Reche, P. A. (2017). Fundamentals and Methods for T- and B-Cell Epitope Prediction. Journal of Immunology Research, 2017, 1–14. https://doi.org/10.1155/2017/2680160
Santos Junior, M. N., Santos, R. S., Neves, W. S., Fernandes, J. M., De Brito Guimarães, B. C., Barbosa, M. S., Silva, L. S. C., Gomes, C. P., Rezende, I. S., Oliveira, C. N. T., De MacÊdo Neres, N. S., Campos, G. B., Bastos, B. L., Timenetsky, J., & Marques, L. M. (2020). Immunoinformatics and analysis of antigen distribution of Ureaplasma diversum strains isolated from different Brazilian states. BMC Veterinary Research, 16(1), 1–16. https://doi.org/10.1186/s12917-020-02602-1
Sarah C Woodhall et al. (2019). Advancing the public health applications of Chlamydia trachomatis serology. Lancet Infect Dis, 176(3), 139–148. https://doi.org/10.1016/S1473-3099(18)30159-2.Advancing
Serrano, B., Brotons, M., Bosch, F. X., & Bruni, L. (2018). Epidemiology and burden of HPV-related disease. Best Practice and Research: Clinical Obstetrics and Gynaecology, 47, 14–26. https://doi.org/10.1016/j.bpobgyn.2017.08.006
Smith, B. C., Simpson, Y., Morshed, M. G., Cowen, L. L. E., Hof, R., Wetherell, C., & Cameron, C. E. (2013). New proteins for a new perspective on syphilis diagnosis. Journal of Clinical Microbiology, 51(1), 105–111. https://doi.org/10.1128/JCM.01390-12
Smith, B. C., Simpson, Y., Morshed, M. G., Cowen, L. L. E., Hof, R., Wetherell, C., & Camerona, C. E. (2013). New proteins for a new perspective on syphilis diagnosis. Journal of Clinical Microbiology, 51(1), 105–111. https://doi.org/10.1128/JCM.01390-12
Spiteri, G., Unemo, M., & Mårdh, O. (2019). The resurgence of syphilis in high-income countries in the 2000s : a focus on Europe. Epidemiology and Infection, 1, 2–8.
Talha, S. M., Nemani, S. K., Salminen, T., Kumar, S., Swaminathan, S., Soukka, T., Pettersson, K., & Khanna, N. (2012). Escherichia coli-expressed near full length HIV-1 envelope glycoprotein is a highly sensitive and specific diagnostic antigen. BMC Infectious Diseases, 12(1), 1. https://doi.org/10.1186/1471-2334-12-325
Tan, M., Xu, M., Xiao, Y., Xie, Y., Jiang, C., Zheng, K., Chen, Q., Zhao, F., Zeng, T., & Wu, Y. (2018). Screening and identification of immunoactive FlaB protein fragments of Treponema pallidum for the serodiagnosis of syphilis. Pathogens and Disease, 76(2). https://doi.org/10.1093/femspd/ftx122
Thomas, P. P. M., Yadav, J., Kant, R., Ambrosino, E., Srivastava, S., Batra, G., Dayal, A., Masih, N., Pandey, A., Saha, S., Heijmans, R., Lal, J. A., & Morré, S. A. (2019). Sexually transmitted infections and behavioral determinants of sexual and reproductive health in the allahabad district (India) based on data from the chlamindia study. Microorganisms, 7(11). https://doi.org/10.3390/microorganisms7110557
Tiwari, R. P., Jain, A., Khan, Z., Kumar, P., Bhrigu, V., & Bisen, P. S. (2013). Designing of novel antigenic peptide cocktail for the detection of antibodies to HIV-1/2 by ELISA. Journal of Immunological Methods, 387(1–2), 157–166. https://doi.org/10.1016/j.jim.2012.10.009
Tripathi, N. K., & Shrivastava, A. (2019). Recent Developments in Bioprocessing of Recombinant Proteins: Expression Hosts and Process Development. Frontiers in Bioengineering and Biotechnology, 7(December), 1–35. https://doi.org/10.3389/fbioe.2019.00420
Van Den Heuvel, A., Smet, H., Prat, I., Sands, A., Urassa, W., Fransen, K., & Crucitti, T. (2019). Laboratory evaluation of four HIV/syphilis rapid diagnostic tests. BMC Infectious Diseases, 19(1), 1–13. https://doi.org/10.1186/s12879-018-3567-x
Wesley, Hu, R., Hyland, L., Crandall, D., Ramachandran, P., Pangarkar, C., Sivaraman, S., & Haghiri, B. (2018). Expression and characterization of the soluble form of recombinant mature HSV-2 glycoprotein G for use in anti-HSV-2 IgG serodiagnostic immunoassay. Journal of Virological Methods, 252, 65–69. https://doi.org/10.1016/j.jviromet.2017.10.021
WHO (World Health Organization). (2018). Report on global sexually transmitted infection surveillance.
Winstanley, C. E., Ramsey, K. H., Marsh, P., & Clarke, I. N. (2017). Development and evaluation of an enzyme-linked immunosorbent assay for the detection of antibodies to a common urogenital derivative of Chlamydia trachomatis plasmid-encoded PGP3. Journal of Immunological Methods, 445, 23–30. https://doi.org/10.1016/j.jim.2017.03.002
World Health Organization (WHO). (1981). WHO GUIDELINES FOR THE Treatment of Chlamydia trachomatis. Journal of Chemical Information and Modeling, 53(9), 1689–1699.
Xie, Y., Xu, M., Wang, C., Xiao, J., Xiao, Y., Jiang, C., You, X., & Zhao, F. (2016). Diagnostic value of recombinant Tp0821 protein in serodiagnosis for syphilis. Letters in Applied Microbiology I, 62(4), 336–343. https://doi.org/10.1111/lam.12554
Xu, M., Xie, Y., Jiang, C., Xiao, Y., Kuang, X., Zhao, F., Zeng, T., Liu, S., Liang, M., Li, L., Wang, C., & Wu, Y. (2016). A novel ELISA using a recombinant outer membrane protein, rTp0663, as the antigen for serological diagnosis of syphilis. International Journal of Infectious Diseases : IJID : Official Publication of the International Society for Infectious Diseases, 43, 51–57. https://doi.org/10.1016/j.ijid.2015.12.013
Yufenyuy, E. L., & Parekh, B. S. (2018). Development of a Multiplex Assay for Concurrent Diagnoses and Detection of HIV-1, HIV-2, and Recent HIV-1 AIDS Research and Human Retroviruses, 34(12), Infection in a Single Test. 1017–1027. https://doi.org/10.1089/AID.2017.0
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Lucas Santana Coelho da Silva; Caroline Tianeze de Castro; Camila Pachêco Gomes; Manoel Neres Santos Júnior; Maysa Santos Barbosa; Wanderson Souza Neves; Viviane Gomes Ribeiro; Guilherme Barreto Campos; Bruno Lopes Bastos; Lucas Miranda Marques
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.