Marcadores forenses para revelar huellas dactilares ensangrentadas: una breve revisión

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i11.33371

Palabras clave:

Materiales luminiscentes; Ciencias forenses; Huella digital con sangre.

Resumen

El desarrollo de materiales luminiscentes ha sido de gran relevancia en el campo de la ciencia forense, debido a las importantes contribuciones a la mejora del desarrollo de huellas dactilares latentes, la calidad de imagen y la detección de numerosos rastros en la escena del crimen. En este sentido, este artículo tiene como objetivo revisar los métodos utilizados y los materiales con propiedades luminiscentes prometedoras para su aplicación en marcadores forenses para revelar huellas dactilares con sangre en diferentes superficies. Además, analizaremos el desarrollo de nuevas tecnologías y la optimización de los métodos existentes para encontrar mejores soluciones a los problemas que enfrentan los expertos criminales durante una investigación forense, como mejorar factores como la toxicidad, la sensibilidad, la superficie y la eficiencia del material. y los métodos de desarrollo, utilizando enfoques basados ​​en materiales fluorescentes como nanopartículas dopadas con tierras raras, 1,8-diazafluoren-9-ona, colorantes ácidos y ninhidrina. Por lo tanto, se encontró que se necesita más investigación para comprender mejor el mecanismo de reacción involucrado en estos materiales, así como el desarrollo de nuevos materiales eficientes, con baja toxicidad y más sensibilidad para el procesamiento de huellas dactilares latentes en diferentes superficies.

Citas

Anwar, M. U., Tandon, S. S., Dawe, L. N., Habib, F., Murugesu, M., & Thompson, L. K. (2012). Lanthanide complexes of tritopic bis (hydrazone) ligands: single-molecule magnet behavior in a linear DyIII3 complex. Inorganic chemistry, 51( 2), 1028–1034.

Ayhan, M. M., Singh, A., Jeanneau, E., Ahsen, V., Zyss, J., Ledouz-Rak, I., Gürek, A. G., Hirel, C., Bretonnière, Y., & Andraud. C 2014). ABAB homoleptic bis (phthalocyaninato) lanthanide (III) complexes: original octupolar design leading to giant quadratic hyperpolarizability. Inorganic chemistry, 53(9), 359–4370.

Balsan, J. D., Rosa, B. N., Pereira, C. M. P., & Santos, C. M. M. (2019). Desenvolvimento de metodologia de revelação de impressão digital latente com chalconas. Química Nova, 42, 845–850.

Barni, F., Lewis, S. W., Berti, A., Miskelly, G. M., & Lago, G. (2007). Forensic application of the luminol reaction as a presumptive test for latent blood detection. Talanta, 72(3), 896–913.

Bécue, A., Eldridger, H., & Champod, C. (2020). Interpol review of fingermarks and other body impressions 2016–2019. Forensic Science International: Synergy, 2, 442-480.

Bécue, A., Moret, S., Champod, C., & Margot, P. (2009). Use of quantum dots in aqueous solution to detect blood fingermarks on non-porous surfaces. Forensic science international, 191(1), 36–41.

Bhatia, T. (2021). Novel nanomaterials in forensic investigations: A review. Materials Today: Proceedings, 50(5), 1071-1079.

Binnemans, K. (2009). Lanthanide-based luminescent hybrid materials. Chemical reviews, 109(9), 4283–4374.

Bleay, S. M., Croxton, R. S., & Puit, M. (2018). Fingerprint development techniques: theory and application. Wiley.

Cadd, S., Li, B., Beveridge, P., William, T. O., Campbell, A., & Islam, M. (2016). A comparison of visible wavelength reflectance hyperspectral imaging and Acid Black 1 for the detection and identification of blood stained fingerprints. Science & Justice, 56(4), 247–255.

Chemla, D. S. (2012). Nonlinear optical properties of organic molecules and crystals. Elsevier Science.

Chen, L., Chen, M., Zhou, Y., Ye, C., & Liu, R. (2021). NIR Photosensitizer for Two-Photon Fluorescent Imaging and Photodynamic Therapy of Tumor. Frontiers in Chemistry, 9, 1–8.

Cui, Y., Yue, Y., Qian, G., & Chen, B. (2012). Luminescent functional metal–organic frameworks. Chemical reviews, 112(2), 1126–1162.

Dalal, A., Nehra, K., Hooda, A., Singh, S., Bhagwan, S., Singh, D., & Kumar, S. (2022). 2, 2′-Bipyridine based fluorinated β-Diketonate Eu (III) complexes as red emitter for display applications. Inorganic Chemistry Communications, 140, 109399.

Dang, S., Zhang, J. -H., Sun, Z.-M., & Zhang G, H. (2012). Luminescent lanthanide metal–organic frameworks with a large SHG response. Chemical Communications, 48(90), 11139–11141.

Darshan, G. P., Premkumar, H. B., Nagabhushana, H., Sharma, S. C., Prasad, B. D., & Prashantha, S. C. (2016). Neodymium doped yttrium aluminate synthesis and optical properties–A blue light emitting nanophosphor and its use in advanced forensic analysis. Dyes and Pigments, 134, 227–233.

Datta, A. K., Lee, H. C., Ramotowski, R., & Gaensslen, R. E. (2001). Advances in fingerprint technology. CRC press.

Ferreira, R. A. S., André, P. S., & Carlos, L. D. (2010). Organic–inorganic hybrid materials towards passive and active architectures for the next generation of optical networks. Optical Materials, 32(11), 1397–1409.

Ferreira, R. G., Paula, R. B. A., Okuma, A. A., & Ferreira, L. M. C. (2021). Fingerprint Development Techniques: A Review. Revista Virtual Quimica, 13(6), 1278-1302.

Firmino, E., Oliveira, L. S., Martins, F. C. B., S Filho, J. C., Barbosa, H. P., Andrade, A. A., Rezende, T. K. L, Lima, R. C., Santos, M. A. C., & Góes, M. S. (2021). Eu3+-doped SiO2–Y2O3 containing Sr2+ for application as fingerprinting detector. Optical Materials, 114, 111018.

Garg, R. K., Kumari, H., & Kaur, R. (2011). A new technique for visualization of latent fingerprints on various surfaces using powder from turmeric: a rhizomatous herbaceous plant (Curcuma longa). Egyptian Journal of Forensic Sciences, 1(1), 53–57.

Gayathri, P., Subramaniyan, S. B., Veerappan, A., Pannipara, M., Al-Sehemi, A. G., Moon, D., & Anthony, S. P. (2021). Knotting Two Donor− π-Acceptor AIEgens Using a Nonconjugated Linker: Tunable and Switchable Fluorescence and Fingerprinting and Live Cell Imaging Applications. Crystal Growth & Design, 22(1).

Hannachi, D., Haroun, M. F., Khirreddine, A., & Chermette, H. (2019). Optical and nonlinear optical properties of Ln (Tp) 2, where Ln= La,…, Lu and Tp= tris (pyrazolyl) borate: a DFT+ TD-DFT study. New Journal of Chemistry, 43(36) 14377–14389.

Hazarika, P., & Russell, D. A. (2012). Advances in fingerprint analysis. Angewandte Chemie International Edition, 51(15), 3524–3531.

Júnior, J. C. A., Santos, G. L., Colaço, M. V., Barroso, R. C., Ferreira, F. F., Santos, M. V., Campos, N. R., Marinho, M. V., Jesus, L. T., & Freire, R. O. (2020). New EuIII Pyromellitic Metal–Organic Framework of Intense Red-Orange Luminescence and High Thermal Stability for Marking in Gunshot Residues. The Journal of Physical Chemistry C, 124(18), 9996–10006.

Li, B.-Y., Zhang, X.-L., Zhang, L.-Y., Wang, T.-T., Li, L., Wang, C.-G., & Su, Z.-M. (2016). NIR-responsive NaYF4: Yb, Er, Gd fluorescent upconversion nanorods for the highly sensitive detection of blood fingerprints. Dyes and Pigments, 134, 178–185.

Liu, Z., Yan, X., Li, L., & Wu, G. (2017). Theoretical insight into the substituent effects on linear and nonlinear optical properties of azobenzene‐based chromophores. Journal of Physical Organic Chemistry, 30(6), 3631.

Luedeke, M., Miller, E., & Sprague, J. E. (2016). The effects of Bluestar® and luminol when used in conjunction with tetramethylbenzidine or phenolphthalein. Forensic science international, 262, 156–159.

Martin-Ramos, P., & Ramos-Silva, M.(2018). Lanthanide-based multifunctional materials: from OLEDs to SIMs (1ª ed.). Elsevier.

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & PRISMA Group*. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Annals of internal medicine, 151(4), 264-269.

Moret, S., Bégue, A., & Champod, C. (2013). Cadmium-free quantum dots in aqueous solution: Potential for fingermark detection, synthesis and an application to the detection of fingermarks in blood on non-porous surfaces. Forensic science international, 224(1), 101–110.

Naik, E. I., Naik, H. S. B., Swamy, B. E. K., Viswanath, R., Gowda, I. K. S., Prabhakara, M. C., & Chetankumar, K. (2021). Influence of Cu doping on ZnO nanoparticles for improved structural, optical, electrochemical properties and their applications in efficient detection of latent fingerprints. Chemical Data Collections, 33,100671.

Nguyen, T. N., Eliseeva, S. V., Gladysiak, A., Petoud, S., & Stylianou, K. C. (2020). Design of lanthanide-based metal–organic frameworks with enhanced near-infrared emission. Journal of Materials Chemistry A, 8(20), 10188–10192.

Pacheco, B. S., Silva, C. C., Rosa, B. N., Mariotti, K. C., Nicolodi, C., Poletti, T., Segatto, N. V., Collares, T., Seixas, F. K., & Paniz, O. (2021). Monofunctional curcumin analogues: evaluation of green and safe developers of latent fingerprints. Chemical Papers, 75(7), 3119–3129.

Pandiyan, S., Aumugam, L., Srirengan, S. P., Pitchan, R., Sevugan, P., Kannan, K., Pitchan, G., Hegde, T. A., & Gandhirajan, V. (2020). Biocompatible carbon quantum dots derived from sugarcane industrial wastes for effective nonlinear optical behavior and antimicrobial activity applications. ACS omega, 5(47), 30363–30372.

Parola, S., Julián-López, B., Carlos, L. D., & Sanchez, C. (2016). Optical properties of hybrid organic‐inorganic materials and their applications. Advanced Functional Materials, 26(36), 6506–6544.

Prasad, V., Lukose, S., Agarwal, P., & Prasad, L. (2020). Role of nanomaterials for forensic investigation and latent fingerprinting—a review. Journal of forensic sciences, 65(1), 26–36.

Rawtani, D., Tharmavaram, M., Pandey, G., & Hussain, C. M. (2019). Functionalized nanomaterial for forensic sample analysis. TrAC Trends in Analytical Chemistry, 120, 115661.

Rocha, J., Carlos, L. D., Paz, F. A. A., & Ananias, D. (2011). Luminescent multifunctional lanthanides-based metal–organic frameworks. Chemical Society Reviews, 40(2), 926–940.

Safdar, M., Ghazy, A., Lastusaari, M., & Karppinen, M. (2020). Lanthanide-based inorganic–organic hybrid materials for photon-upconversion. Journal of Materials Chemistry C, 8(21), 6946–6965.

Sampaio, R. F., & Mancini, M. C. (2007). Estudos de revisão sistemática: um guia para síntese criteriosa da evidência científica. Brazilian Journal of Physical Therapy, 11, 83-89.

Silva, R. R., Agustini, B. C., Silva, A. L. L., & Frigeri, H. R. (2012). Luminol in the forensic science. Journal of Biotechnology and Biodiversity, 3(4), 172–177.

Sobral, G. A., Gomes, M. A., Macedo, Z. S., Alencar, M., & Novais, S. M. V. (2016). Synthesis and characterization of multicolour fluorescent nanoparticles for latent fingerprint detection. Bulletin of Materials Science, 39(6), 1565–1568.

Sushma, K. C., Kumar, S., Nagaraju, G., Aarti, D. P., Reddy, M. M., Rudresha, M. S., & Basavaraj, R. B. (2022). Color tunable SrZrO3: Sm3+ nanopowders with satisfactory photoluminescent, band engineering properties for warm white LEDs and advanced forensic applications. Journal of Molecular Structure, 1254, 132302.

Swati, G., Bihnoi, S., Singh, P., Lohia, N., Jaiswal, V. V., Dalai, M. K., & Haranath, D. (2018). Chemistry of extracting high-contrast invisible fingerprints from transparent and colored substrates using a novel phosphorescent label. Analytical Methods, 10(3), 308–313.

Taboukhat, S., Kichou, N., Fillaut, J.-L., Alévêque, O., Waszkowska, K., Zawadzka, A., El-Ghayoury, A., Migalska-Zalas, A., & Sahraoui, B. (2020). Transition metals induce control of enhanced NLO properties of functionalized organometallic complexes under laser modulations. Scientific reports, 10(1), 1–15.

Tancrez, N., Feuvrie, C., Ledoux, I., Zyss, J., Toupet, L., Bozec, H. L., & Maury, O. (2005). Lanthanide complexes for second order nonlinear optics: evidence for the direct contribution of f electrons to the quadratic hyperpolarizability. Journal of the American Chemical Society, 127(39), 13474–13475.

Taydakov, I. V., Zaitsev, B. E., Krasnoselskiy, S. S., & Starikova, Z. A. (2011). Synthesis, X-ray structure and luminescent properties of Sm3+ ternary complex with novel heterocyclic β-diketone and 1, 10-phenanthroline (Phen). Journal of rare earths, 29(8). 719–722.

Teo, K. Y., Tiong, M. H., Wee, H. Y., Jasin, N., Liu, Z.-Q., Shiu, M. Y., Tang, J. Y., Tsai, J.-K., Rahamathullah, R., & Khairul, W. M. (2017). The influence of the push-pull effect and a π-conjugated system in conversion efficiency of bis-chalcone compounds in a dye sensitized solar cell. Journal of Molecular Structure, 1143, 42–48.

Tobin, G., Comby, S., Zhu, N., Clérac, R., Gunnlaugsson, T., & Schimitt, W. (2015). Towards multifunctional lanthanide-based metal–organic frameworks. Chemical Communications, 51(68), 13313–13316.

Vivas, M. G., Barboza, C. A., Germino, J. C., Fonseca, R. D., Silva, D. L., Vazquez, P. A. M., Atvars, T. D. Z., Mendonça C. R., & Boni, L. (2020). Molecular Structure–Optical Property Relationship of Salicylidene Derivatives: A Study on the First-Order Hyperpolarizability. The Journal of Physical Chemistry A, 125(1), 99–105.

Wang, M., Li, M., Yu, A., Wu, J., & Mao, C. (2015). Rare earth fluorescent nanomaterials for enhanced development of latent fingerprints. ACS applied materials & interfaces, 7(51), 28110–28115.

Wang, M., Li, M., Yu, A., Zhu, Y., Yang, M., & Mao, C. (2017). Fluorescent nanomaterials for the development of latent fingerprints in forensic sciences. Advanced functional materials, 27(14) 1606243.

Wu, J., Wilson, B. A., Smith JR, D. W., & Nielsen, S. O. (2014). Towards an understanding of structure-nonlinearity relationships in triarylamine-based push-pull electro-optic chromophores: the influence of substituent and molecular conformation on molecular hyperpolarizabilities. Journal of Materials Chemistry C, 2(14), 2591–2599.

Xu, H., Chen, R., Sun, Q., Lai, W., Su, Q., Huang, W., & Liu, X. (2014). Recent progress in metal–organic complexes for optoelectronic applications. Chemical Society Reviews, 43(10), 3259–3302.

Yamashita, B., & French, M.(2011). Latent print development. The fingerprint sourcebook, 1, 155–222.

Yan, B. (2017). Lanthanide-functionalized metal–organic framework hybrid systems to create multiple luminescent centers for chemical sensing. Accounts of chemical research, 50(11), 2789–2798.

Yan, Y., Zhang, J., Yi, S., Liu, L., & Huang, C. (2021). Lighting up forensic science by aggregation-induced emission: A review. Analytica Chimica Acta, 1155, 238119.

Yang, X., Shao, Z., Zhao, Y., Xie, Q., Meng, X., Song, Y., & Hou, H. (2020). Control of third-order nonlinear optical properties by coordination metal change based on a series of metal organic chains. Polyhedron, 185, 114598.

Ye, H. Q., Li, Z., Peng, Y., Wang, C. C., Li, T. Y., Zheng, Y. X., Sapelkin, A., Adamopuoulos, G., Hernández, I., & Wyatt, P. B. (2014). Organo-erbium systems for optical amplification at telecommunications wavelengths. Nature materials, 13(4), 382–386.

Younis, S. A., Bhardwaj, N., Bhardwaj, S. K., Kim, K.-H., & Deep, A. (2021). Rare earth metal–organic frameworks (RE-MOFs): Synthesis, properties, and biomedical applications. Coordination Chemistry Reviews, 429, 213620.

Zhang S., Yin, W., Yang, Z., Yang, Y., Li, Z., Zhang, S., Zhang, B., Dong, F., Lv, J., & Han, B. (2021). Functional Copolymers Married with Lanthanide (III) Ions: A Win-Win Pathway to Fabricate Rare Earth Fluorescent Materials with Multiple Applications. ACS Applied Materials & Interfaces, 13(4), 5539–5550.

Zhao, P., Tofighi, S., O’Donnell, R. M., Shi, J., Bondar, M. V., Hagan, D. J., & Stryland, E. W. V. (2018). Dual Emissive Multinuclear Iridium (III) Complexes in Solutions: Linear Photophysical Properties, Two-Photon Absorption Spectra, and Photostability. The Journal of Physical Chemistry C, 122(12), 6786–6793.

Publicado

15/08/2022

Cómo citar

ARAÚJO, R. S. de .; SOUZA, G. A. B. de; VIEIRA, D. A. .; FERNANDES, C. S. .; FERREIRA, F. C. L. . Marcadores forenses para revelar huellas dactilares ensangrentadas: una breve revisión. Research, Society and Development, [S. l.], v. 11, n. 11, p. e38111133371, 2022. DOI: 10.33448/rsd-v11i11.33371. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/33371. Acesso em: 20 dic. 2024.

Número

Sección

Revisiones