Método de bajo costo para la cuantificación de ácido salicílico cargado en nanopartículas lípidas que contienen aceite de copaiba

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i11.33419

Palabras clave:

Acne vulgaris; Método analítico; Validación analítica; Nanocargadores lipídicos; Espectrofotometría UV-Visible; Bioactivo vegetal.

Resumen

La demanda de métodos analíticos para la cuantificación de fármacos es un obstáculo en la investigación y desarrollo de nuevos productos, debido a la necesidad de utilizar técnicas más sencillas para la identificación y cuantificación de los activos. Aunque es una técnica muy sensible y selectiva para estas determinaciones, la cromatografía líquida de alta resolución (HPLC) requiere instrumentación costosa y analistas bien capacitados, mientras que la espectrofotometría es rápida, de bajo costo y difícilmente requiere pretratamiento de la muestra. Por lo tanto, este estudio tuvo como objetivo desarrollar un método de cuantificación por espectrofotometría UV-visible para ácido salicílico (SA) encapsulado en portadores de lípidos nanoestructurados (NLC) que contienen aceite de copaiba. El método fue validado según criterios nacionales e internacionales (ANVISA, ICH y FDA). El diluyente fue una mezcla de etanol absoluto y ácido fosfórico (99:1) y la detección se realizó a 310 nm. La interferencia de la matriz con relación a NLC-SA fue mínima (0,37%), demostrando la selectividad. Se obtuvo linealidad en el rango de 5,0 a 30,0 μg/mL (r = 0,99948) y el método demostró ser exacto, con alta recuperación de AS en presencia de los demás componentes (más del 96% de recuperación), con precisión en dos niveles: intra e interdías (DPR < 5%). Los límites de detección y cuantificación fueron 0,51 y 1,70 μg/mL, respectivamente. Finalmente, según los criterios del índice de Youden, el método se mostró robusto ante las variaciones propuestas, obteniendo valores del efecto inferiores al valor crítico (0,07). Por tanto, el método desarrollado es accesible, eficaz y válido para la cuantificación de AS en nanopartículas lipídicas de matriz compleja.

Citas

Abrão, L. C. de C., Silveira, A. T., de Faria, H. D., Machado, S. C., Mendes, T. V., Plácido, R. V., Marciano, L. P. de A., & Martins, I. (2020). Toxicological analyses: analytical method validation for prevention or diagnosis. Toxicology Mechanisms and Methods, 31(1), 18–32. Recovered from https://doi.org/10.1080/15376516.2020.1839612. doi: 10.1080/15376516.2020.1839612

Albuquerque, V. J. A., Reinaldo, A. T. G., Silva, D. A., Silva, S. G. F., Azevedo Filho, C. A., Lima, E. N., & Sousa, C. E. M. (2020). Development and validation of a method for quantification of sildenafil citrate in UV-HPLC. Brazilian Journal of Health Review, 3(1), 286–299. Recovered from https://doi.org/10.34119/bjhrv3n1-021. doi: 10.34119/bjhrv3n1-021

Almeida, O. P., Marcial, S. P. S., Gouveia, F. P. P., & Carneiro, G. (2017). Validation of a chromatographic analytical method for quantification of benznidazole incorporated in nanostructured lipid formulations. Journal of the Brazilian Chemical Society, 28(2), 236–241. Recovered from https://doi.org/10.5935/0103-5053.20160168. doi: 10.34119/bjhrv3n1-021

Agência Nacional de Vigilância Sanitária. (2003). Resolução RE no 899, de 29 de maio de 2003. Recovered from https://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2003/res0899_29_05_2003.html.

Agência Nacional de Vigilância Sanitária. (2017). Resolução da Diretoria Colegiada (RDC) no 166, de 24 de julho de 2017. Recovered from http://portal.anvisa.gov.br/documents/10181/2721567/RDC_166_2017_COMP.pdf/d5fb92b3-6c6b-4130-8670-4e3263763401

Arruda, C., Aldana Mejía, J. A., Ribeiro, V. P., Gambeta Borges, C. H., Gomes Martins, C. H., Sola Veneziani, R. C., Ambrósio, S. R., & Bastos, J. K. (2019). Occurrence, chemical composition, biological activities and analytical methods on Copaifera genus—A review. Biomedicine and Pharmacotherapy, 109(July 2018), 1–20. Recovered from https://doi.org/10.1016/j.biopha.2018.10.030. doi: 10.1016/j.biopha.2018.10.030

Castro e Souza, M. A., Reis, N. F. A., de Souza Batista, L., da Costa César, I., Fernandes, C., & Pianetti, G. A. (2018). An Easy and Rapid Spectrophotometric Method for Determination of Chloroquine Diphosphate in Tablets. Current Pharmaceutical Analysis, 16(1), 5–11. Recovered from https://doi.org/10.2174/1573412914666180730123426. doi: 10.2174/1573412914666180730123426

César, I. D. C., & Pianetti, G. A. (2009). Robustness evaluation of the chromatographic method for the quantitation of lumefantrine using Youden’s test. Brazilian Journal of Pharmaceutical Sciences, 45(2), 235–240. Recovered from https://doi.org/10.1590/S1984-82502009000200007. doi: 10.1590/S1984-82502009000200007

Charny, J. W., Choi, J. K., & James, W. D. (2017). Spironolactone for the treatment of acne in women, a retrospective study of 110 patients. International Journal of Women’s Dermatology, 3(2), 111–115. Recovered from https://doi.org/10.1016/j.ijwd.2016.12.002. doi: 10.1016/j.ijwd.2016.12.002

Clayton, A. W., & Thiers, R. E. (1966). Direct spectrophotometric determination of salicylic acid, acetylsalicylic acid, salicylamide, caffeine, and phenacetin in tablets or powders. Journal of Pharmaceutical Sciences, 55(4), 404–407. Recovered from https://doi.org/10.1002/jps.2600550411. doi: 10.1002/jps.2600550411

Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., Khorasani, S., & Mozafari, M. R. (2018). Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics, 10(2), 1–17. Recovered from https://doi.org/10.3390/pharmaceutics10020057. doi: 10.3390/pharmaceutics10020057

El-Ragehy, N. A., Yehia, A. M., Hassan, N. Y., Tantawy, M. A., & Abdelkawy, M. (2016). Chemometrics tools in detection and quantitation of the main impurities present in aspirin/dipyridamole extended-release capsules. Journal of AOAC International, 99(4), 948–956. Recovered from https://doi.org/10.5740/jaoacint.16-0082. doi: 10.5740/jaoacint.16-0082

Enéas, P. C. R., Costa, A. L. O., Souza, D. E. R., Alvesa, J. C., Magalhães, M., Fialho, S. L., César, I. C., & Pianetti, G. A. (2020). Simultaneous quantitation of efavirenz, lamivudine and tenofovir disoproxil fumarate in fixed dose combination tablet by high performance liquid chromatography. Brazilian Journal of Health and Pharmacy, 2(4), 38–50. Recovered from https://doi.org/10.29327/226760.2.4-5. doi: 10.29327/226760.2.4-5

Falcão, D. Q., Mourão, S. C., Araujo, J. L. de, Pereira, P. A. K., Cardoso, A. C. A., Almeida, K. B. de, Zibetti, F. M., & Lima, B. G. (2015). CHALLENGES IN DEVELOPMENT OF ESSENTIAL OIL NANODELIVERY SYSTEMS AND FUTURE PROSPECTS. In J. Naik (Org.), Nano Based Drug Delivery (p. 557–578). IAPC Publishing. Recovered from https://doi.org/10.1016/B978-0-12-811037-9.00023-0. doi: 10.1016/B978-0-12-811037-9.00023-0

Food and Drug Administration. (1994). Reviewer Guidance - Validation of chromatographic methods. CDER. Center for Drug Evaluation and Research, 22(3), 1–30. Recovered from http://www.scopus.com/inward/record.url?eid=2-s2.0-0031924265&partnerID=tZOtx3y1

Food and Drug Administration. (2015). Analytical Procedures and Methods Validation for Drugs and Biologics Guidance for Industry Analytical Procedures and Methods Validation for Drugs and Biologics Guidance for Industry (Número July).

Ferreira-Nunes, R., Ferreira, L. A., Gratieri, T., Cunha-Filho, M., & Gelfuso, G. M. (2019). Stability-indicating analytical method of quantifying spironolactone and canrenone in dermatological formulations and iontophoretic skin permeation experiments. Biomedical Chromatography, 33(11), 1–10. Recovered from https://doi.org/10.1002/bmc.4656. doi: 10.1002/bmc.4656

Ferreira, C. P., Techera Antunes, F. T., Rebelo, I. N., da Silva, C. A., Vilanova, F. N., Corrêa, D. S., & de Souza, A. H. (2020). Application of the UV–vis spectrophotometry method for the determination of glutamate in the cerebrospinal fluid of rats. Journal of Pharmaceutical and Biomedical Analysis, 186. Recovered from https://doi.org/10.1016/j.jpba.2020.113290. doi: 10.1016/j.jpba.2020.113290

Garcês, A., Amaral, M. H., Sousa Lobo, J. M., & Silva, A. C. (2018). Formulations based on solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for cutaneous use: A review. European Journal of Pharmaceutical Sciences, 112(September 2017), 159–167. Recovered from https://doi.org/10.1016/j.ejps.2017.11.023. doi: 10.1016/j.ejps.2017.11.023

Ghate, V. M., Lewis, S. A., Prabhu, P., Dubey, A., & Patel, N. (2016). Nanostructured lipid carriers for the topical delivery of tretinoin. European Journal of Pharmaceutics and Biopharmaceutics, 108, 253–261. Recovered from https://doi.org/10.1016/j.ejpb.2016.07.026. doi: 10.1016/j.ejpb.2016.07.026

International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use. (2005). GESTÃO DO RISCO À QUALIDADE. Fase 4, 1–19. Recovered from https://www.gov.br/anvisa/pt-br/acessoainformacao/institucional/relacoes-internacionais/convergencia-regulatoria/arquivos/1558json-file-1

Kantikosum, K., Chongpison, Y., Chottawornsak, N., & Asawanonda, P. (2019). The efficacy of glycolic acid, salicylic acid, gluconolactone, and licochalcone a combined with 0.1% adapalene vs adapalene monotherapy in mild-to-moderate acne vulgaris: A double-blinded within-person comparative study. Clinical, Cosmetic and Investigational Dermatology, 12, 151–161. Recovered from https://doi.org/10.2147/CCID.S193730. doi:10.2147/CCID.S193730

Kitamura, K., & Majima, R. (1982). Determination of Salicylic Acid in Aspirin Powder by Second Derivative Ultraviolet Spectrometry. Analytical Chemistry, 55(1), 54–56. Recovered from https://doi.org/10.1021/ac00252a017. doi: 10.1021/ac00252a017

Kokot, Z., & Burda, K. (1998). Simultaneous determination of salicylic acid and acetylsalicylic acid in aspirin delayed-release tablet formulations by second-derivative UV spectrophotometry. Journal of Pharmaceutical and Biomedical Analysis, 18(4–5), 871–875. Recovered from https://doi.org/10.1016/S0731-7085(98)00225-8. doi: 10.1016/S0731-7085(98)00225-8

Krambeck, K., Santos, D., Otero-Espinar, F., Sousa Lobo, J. M., & Amaral, M. H. (2020). Lipid nanocarriers containing Passiflora edulis seeds oil intended for skin application. Colloids and Surfaces B: Biointerfaces, 193(May), 111057. Recovered from https://doi.org/10.1016/j.colsurfb.2020.111057. doi: 10.1016/j.colsurfb.2020.111057

Lammari, N., Louaer, O., Meniai, A. H., Fessi, H., & Elaissari, A. (2021). Plant oils: From chemical composition to encapsulated form use. International Journal of Pharmaceutics, 601, 1–34. Recovered from https://doi.org/10.1016/j.ijpharm.2021.120538. doi: 10.1016/j.ijpharm.2021.120538

Leandro, L. M., De Sousa Vargas, F., Barbosa, P. C. S., Neves, J. K. O., Da Silva, J. A., & Da Veiga-Junior, V. F. (2012). Chemistry and biological activities of terpenoids from copaiba (Copaifera spp.) oleoresins. Molecules, 17(4), 3866–3889. Recovered from https://doi.org/10.3390/molecules17043866. doi: 10.3390/molecules17043866

Lu, J., Cong, T., Wen, X., Li, X., Du, D., He, G., & Jiang, X. (2019). Salicylic acid treats acne vulgaris by suppressing AMPK/SREBP1 pathway in sebocytes. Experimental Dermatology, 28(7), 786–794. Recovered from https://doi.org/10.1111/exd.13934. doi: 10.1111/exd.13934

Mu, H., & Holm, R. (2018). Solid lipid nanocarriers in drug delivery: characterization and design. Expert Opinion on Drug Delivery, 15(8), 771–785. Recovered from https://doi.org/10.1080/17425247.2018.1504018. doi: 10.1080/17425247.2018.1504018

Nalini, C. N., & Kumar, V. (2020). A Review of Different Analytical Techniques for Fexofenadine Hydrochloride and Montelukast Sodium in Different Matrices. Critical Reviews in Analytical Chemistry, 51(3), 232–245. Recovered from https://doi.org/10.1080/10408347.2019.1709410. doi: 10.1080/10408347.2019.1709410

Patel, R., & Prabhu, P. (2020). Nanocarriers as versatile delivery systems for effective management of acne. International Journal of Pharmaceutics, 579, 119140. Recovered from https://doi.org/10.1016/j.ijpharm.2020.119140. doi: 10.1016/j.ijpharm.2020.119140

Ramos, T. R., Santoro, M. I. R. M., Kedor-Hackmann, E. R. M., & Singh, A. K. (2005). Validação de um método analítico para a determinação de substâncias ativas em formulaçõ es farmacêuticas empregadas em “peelings” químicos. Revista Brasileira de Ciencias Farmaceuticas/Brazilian Journal of Pharmaceutical Sciences, 41(2), 229–235. Recovered from https://doi.org/10.1590/s1516-93322005000200011. doi: 10.1590/s1516-93322005000200011

Saha, U., & Baksi, K. (1985). Spectrophotometric determination of salicylic acid in pharmaceutical formulations using copper(II) acetate as a colour developer. The Analyst, 110(6), 739–741. Recovered from https://doi.org/10.1039/an9851000739. doi: 10.1039/an9851000739

Souza, S. V. C., & Junqueira, R. G. (2005). A procedure to assess linearity by ordinary least squares method. Analytica Chimica Acta, 552(1–2), 25–35. Recovered from https://doi.org/10.1016/j.aca.2005.07.043. doi: 10.1016/j.aca.2005.07.043

Svetlichny, G., Kulkamp-Guerreiro, I. C., Cunha, S. L., Silva, F. E. K., Bueno, K., Pohlmann, A. R., Fuentefria, A. M., & Guterres, S. S. (2015). Solid lipid nanoparticles containing copaiba oil and allantoin: Development and role of nanoencapsulation on the antifungal activity. Pharmazie, 70(3), 155–164. Recovered from https://doi.org/10.1691/ph.2015.4116. doi: 10.1691/ph.2015.4116

Teixeira, F. B., Silva, R. D. B., Lameira, O. A., Webber, L. P., Souza, R., Couto, D. A., Martins, M. D., & Lima, R. R. (2017). Copaiba oil-resin ( Copaifera reticulata Ducke ) modulates the inflammation in a model of injury to rats ’ tongues. 1–8. Recovered from https://doi.org/10.1186/s12906-017-1820-2. doi: 10.1186/s12906-017-1820-2

Vieira, R., Severino, P., Nalone, L. A., Souto, S. B., Silva, A. M., Lucarini, M., Durazzo, A., Santini, A., & Souto, E. B. (2020). Sucupira Oil-Loaded Nanostructured Lipid Carriers (NLC): Lipid Screening, Factorial Design, Release Profile, and Cytotoxicity. Molecules, 25(3), 1–22. Recovered from https://doi.org/10.3390/molecules25030685. doi: 10.3390/molecules25030685

Youden, W. J., & Steiner, E. H. (1975). Statistical manual of AOAC. In Association of Official Analytical Chemistry.

Zheng, Y., Yin, S., Xia, Y., Chen, J., Ye, C., Zeng, Q., & Lai, W. (2018). Efficacy and safety of 2% supramolecular salicylic acid compared with 5% benzoyl peroxide/0.1% adapalene in the acne treatment: a randomized, split-face, open-label, single-center study. Cutaneous and Ocular Toxicology, 38(1), 48–54. Recovered from https://doi.org/10.1080/15569527.2018.1518329. doi: 10.1080/15569527.2018.1518329

Descargas

Publicado

22/08/2022

Cómo citar

ROCHA, B. de A. .; VIANA, M. C.; SILVEIRA, J. V. W. da; CARNEIRO, G. Método de bajo costo para la cuantificación de ácido salicílico cargado en nanopartículas lípidas que contienen aceite de copaiba. Research, Society and Development, [S. l.], v. 11, n. 11, p. e274111133419, 2022. DOI: 10.33448/rsd-v11i11.33419. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/33419. Acesso em: 8 jul. 2024.

Número

Sección

Ciencias de la salud