Uso de bacteriófagos como alternativa en el control de infecciones bacterianas

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i11.33619

Palabras clave:

Actividad antibacterial; Bacteriófagos; Fagoterapia; Resistencia bacteriana.

Resumen

La OMS predice que, para 2050, las infecciones causadas por bacterias resistentes causarán alrededor de 10 millones de muertes al año. Considerada una crisis mundial de salud pública desatendida, la resistencia bacteriana (RAM) se ha visto agravada por el uso indiscriminado de antimicrobianos, los cuales pueden transmitirse de un organismo a otro, favoreciendo la aparición de bacterias panrresistentes. A partir de este escenario, es necesario buscar metodologías alternativas de tratamiento, como la fagoterapia, que se basa en el uso del mecanismo de replicación natural de los bacteriófagos para provocar la lisis de las células bacterianas, que puede ser una excelente opción para el tratamiento y control de Infecciones causadas por bacterias resistentes. Por lo tanto, este trabajo tuvo como objetivo resaltar el potencial de la fagoterapia en la lucha contra este tipo de infecciones, donde esta técnica ha mostrado resultados positivos y esperanzadores en la lucha contra infecciones en varios sitios y por diferentes vías de administración, permitiendo incluso el tratamiento de infecciones causadas por bacterias productoras de biopelículas. Se trata, por tanto, de una técnica extremadamente ventajosa, utilizando virus extremadamente específicos respecto al microorganismo diana, lo que acaba reduciendo los riesgos de toxicidad, reacciones alérgicas y disbiosis. Además, el uso combinado de bacteriófagos y antibióticos presenta resultados sinérgicos que permiten la reducción de la dosis de carga antimicrobiana y una mayor efectividad en el tratamiento. Sin embargo, como la fagoterapia aún no cuenta con protocolos específicos para su uso, se necesitan más estudios relacionados con su implementación, de modo que se pueda disfrutar más de esta alternativa de tratamiento en el futuro.

Citas

Ahmad, S. I. (2002). Treatment of post-burns bacterial infections by bacteriophages, specifically ubiquitous Pseudomonas spp. notoriously resistant to antibiotics. Medical hypotheses, 58 (4), 327-331.

Balfour, H. (2020). Skin inflammation in Netherton syndrome linked to Staphylococcal bacteria. Drug Target Review. https://www.drugtargetreview.com/news/56855/skin-inflammation-in-netherton-syndrome-linked-to-staphylococcal-bacteria/. Acesso em: 17 mar 2021.

Baptista, A. B. (2017). As bactérias multirresistentes hospitalares e as plantas medicinais. Revista Desafios, 4 (4), 1-2.

Berryhill, B. A. et al. Evaluating the potential efficacy and limitations of a phage for joint antibiotic and phage therapy of Staphylococcus aureus infections. Proceedings of the National Academy of Sciences, v. 118, n. 10, 2021.

Blair, J. M. et al. (2015). Molecular Mechanisms of Antibiotic Resistance. Nature, 13, 42-51.

Cano, E. J. et al. (2020). Phage therapy for limb-threatening prosthetic knee Klebsiella pneumoniae infection: case report and in vitro characterization of anti-biofilm activity. Clinical Infectious Diseases, 73 (1), e144-e151.

Chang, R.Y.K. et al. (2022). The effects of different doses of inhaled bacteriophage therapy for Pseudomonas aeruginosa pulmonary infections in mice. Clinical Microbiology and Infection, 28 (7), 983-989.

Cislo, M. et al. (1987). Bacteriophage treatment of suppurative skin infections. Archivum immunologiae et therapiae experimentalis, 35 (2), 175-183.

Costa, A. L. P. D. & Junior, A. C. S. S. (2017). Resistência bacteriana aos antibióticos e Saúde Pública: uma breve revisão de literatura. Estação Científica: (UNIFAP), 7 (2), 45-57.

D'herelle, F. (2007). On an invisible microbe antagonistic toward dysenteric bacilli: brief note by Mr. F. D'Herelle, presented by Mr. Roux,. 1917. Research in microbiology, 158 (7), 553-554.

El-Shibiny, A. & El-Sahhar, S. (2017). Bacteriophages: the possible solution to treat infections caused by pathogenic bacteria. Canadian journal of microbiology, 63 (11), 865-879.

Eskenazi, A. et al. (2022). Combination of pre-adapted bacteriophage therapy and antibiotics for treatment of fracture-related infection due to pandrug-resistant Klebsiella pneumoniae. Nature Communications, 13 (1), 1-14.

Fabijan, A. P. et al. (2020). Safety of bacteriophage therapy in severe Staphylococcus aureus infection. Nature microbiology, 5 (3), 465-472.

Fadlallah, A., et al. (2015). Corneal infection therapy with topical bacteriophage administration. The open phthalmology journal, 9, 167-168.

Gallardo, M. J. M. (2019). Bacteriófagos en lugar de antibióticos. Milenaria, Ciencia y arte, 13, 6-8.

Gill, J. J. & Hyman, P. (2010). Phage choice, isolation, and preparation for phage therapy. Current pharmaceutical biotechnology, 11 (1), 2-14.

Górski, A. et al. (2006). Bacteriophage translocation. FEMS Immunology & Medical Microbiology, 46 (3), 313-319.

Górski, A. et al. (2018). Phage therapy: what have we learned?. Viruses, 10 (6), 288.

Hazbón, M. H. (2004). Recent advances in molecular methods for early diagnosis of tuberculosis and drug-resistant tuberculosis. Biomedica, 24, 149-162.

Hoyle, N. et al. (2018). Phage therapy against Achromobacter xylosoxidans lung infection in a patient with cystic fibrosis: a case report. Research in microbiology, 169 (9), 540-542.

Kutateladze, M. & Adamia, R. (2008). Phage therapy experience at the Eliava Institute. Medecine et maladies infectieuses, 38 (8), 426-430.

La Peña, M.M. (2020). Bacteriófagos, una herramienta prometedora contra las bacterias multirresistentes. [Trabalho de conclusão de curso, Faculdade de Ciências da Universidade de La Laguna].

Lebeaux, D. et al. (2021). A Case of Phage Therapy against Pandrug-Resistant Achromobacter xylosoxidans in a 12-Year-Old Lung-Transplanted Cystic Fibrosis Patient. Viruses, 13 (1), 60.

Little, J. S. et al. (2022). Bacteriophage treatment of disseminated cutaneous Mycobacterium chelonae infection. Nature communications, 13 (1), 1-7.

Loba, A.F.F.R. (2014). Fagoterapia como alternativa ao uso de antibióticos convencionais. [Dissertação de Mestrado em Ciências farmacêuticas, Faculdade de Ciências e Tecnologias da Saúde da Universidade Lusófona de Humanidades e Tecnologias].

Lu, T. K. & Collins, J. J. (2009). Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proceedings of the National Academy of Sciences, 106 (12), 4629-4634.

Merabishvili, M. et al. (2014). Characterization of newly isolated lytic bacteriophages active against Acinetobacter baumannii. PloS one, 9 (8).

Mikeladze, C. et al. (1936). Sur le traitement de la fievre typhoide et des colites aigues par le bacteriophage de d’Herelle. La Médecine, 17, 33-38.

Morozova, V. V. et al. (2018). Bacteriophage treatment of infected diabetic foot ulcers. In: Bacteriophage Therapy. Humana Press, New York, NY, 151-158.

Morrisette, T. et al. (2020). Bacteriophage-antibiotic combinations for Enterococcus faecium with varying bacteriophage and daptomycin susceptibilities. Antimicrobial agents and chemotherapy, 64 (9).

Oms. (2019). Novo relatório pede ação urgente para evitar crise de resistência antimicrobiana. https://www.paho.org/bra/index.php?option=com_content&view=article&id=5922:novo-relatorio-pede-acao-urgente-para-evitar-crise-de-resistencia-antimicrobiana&Itemid=812.

Paisano, A. F. & Bombana, A. C. (2010). Fagoterapia como alternativa no combate às infecções endodônticas. Revista Gaúcha de Odontologia, 58 (2), 243-252.

Park, M. et al. (2012). Characterization and comparative genomic analysis of a novel bacteriophage, SFP10, simultaneously inhibiting both Salmonella enterica and Escherichia coli O157: H7. Applied and environmental microbiology, 78 (1), 58-69.

Peng, F. et al. (2014). Characterization, sequencing and comparative genomic analysis of vB_AbaM-IME-AB2, a novel lytic bacteriophage that infects multidrug-resistant Acinetobacter baumannii clinical isolates. BMC microbiology, 14 (1), 1-14.

Pereira, E. M. M. S. (2011). Aplicações da terapia com bacteriófagos como controle microbiológico. [Trabalho de conclusão de curso, Especialização em Microbiologia da Universidade Federal de Minas Gerais].

Pérez, K.A.B. (2020). Bacteriofagos como alternativa antimicrobiana y su aplicación en la medicina veterinaria y zootecnia. [Monografia, Faculdade de Medicina veterinária e zootecnia da Universidade de Cordoba].

Prada-Peñaranda, C. et al. (2015). Fagoterapia, alternativa para el control de las infecciones bacterianas. Perspectivas en Colombia. Universitas Scientiarum, 20 (1), 43-59.

Rhoads, D. D. et al. (2009). Bacteriophage therapy of venous leg ulcers in humans: results of a phase I safety trial. Journal of wound care, 18 (6), 237-243.

Rincón, N. A. P. et al. (2019). Efecto de bacteriófagos en el control de biopelículas de Klebsiella pneumoniae productoras de Carbapenemasas (KPC). Universidad de los Andes.

Rizzo, N. N. (2017). Salmonella Gallinarum multirresistentes e formadoras de biofilmes em cascas de ovos são sensíveis a bacteriófagos. [Dissertação de Mestrado em Bioexperimentação, Faculdade de Agronomia e Medicina veterinária da Universidade de Passo fundo].

Rodrigues, C. S. et al. (2007). Use of bactec 460 TB system in the diagnosis of tuberculosis. Indian journal of medical microbiology, 25 (1), 32.

Rosa, J. E. C. (2015). Multirresistência bacteriana–uma “nova” terapêutica: Bacteriófagos. [Dissertação, Mestrado em Medicina da Universidade da Beira Interior].

Rothwell, D. D. T. (2014). Terapia bacteriofágica na prática clínica: um estudo de revisão. [Dissertação, Mestrado integrado em Medicina da Universidade de Porto].

Sakandelidze, V. M. & Meĭpariani, A. N. (1974). Use of combined phages in suppurative-inflammatory diseases. Zhurnal mikrobiologii, epidemiologii, i immunobiologii, 51 (6), 135-136.

Satta, G. et al. (2022). Advancing bacteriophages as a treatment of antibiotic-resistant bacterial pulmonary infections. Current Opinion in Pulmonary Medicine, 28(3), 225-231.

Schooley, R.T., et al. (2017). Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrobial agents and chemotherapy, 61 (10).

Silva, J. C. S. D. et al. (2020). A incidência do uso indiscriminado de medicamentos. Revista Brasileira Interdisciplinar de Saúde, 2 (1).

Stroj, L. et al. (1999). Successful treatment with bacteriophage in purulent cerebrospinal meningitis in a newborn. Neurologia i neurochirurgia polska, 33 (3), 693-698.

Tanji, Y. et al. (2005). Therapeutic use of phage cocktail for controlling Escherichia coli O157: H7 in gastrointestinal tract of mice. Journal of bioscience and bioengineering, 100 (3), 280-287.

Tkhilaishvili, T., et al. (2020a). Bacteriophages as Adjuvant to Antibiotics for the Treatment of Periprosthetic Joint Infection Caused by Multidrug-Resistant Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 64 (1).

Tkhilaishvili, T., et al. (2020b). Using bacteriophages as a trojan horse to the killing of dual-species biofilm formed by Pseudomonas aeruginosa and methicillin resistant Staphylococcus aureus. Frontiers in microbiology, 11.

Torres-Barceló, C. & Hochberg, M. E. (2016). Evolutionary rationale for phages as complements of antibiotics. Trends in microbiology, 24 (4), 249-256.

Tortora, G. J., et al. (2017). Microbiologia-12ª Edição. Artmed Editora, 2017.

Traore, H. et al. (2007). Low-cost rapid detection of rifampicin resistant tuberculosis using bacteriophage in Kampala, Uganda. Annals of Clinical Microbiology and Antimicrobials, 6 (1), 1-6.

Wang, L. et al. (2020). Bacteriophage–antibiotic combinations against ciprofloxacin/ceftriaxone-resistant Escherichia coli in vitro and in an experimental Galleria mellonella model. International Journal of Antimicrobial Agents, 56 (6).

Wright, A. et al. (2009). A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic‐resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clinical otolaryngology, 34 (4), 349-357.

Wu, N. & Zhu, T. (2021). Potential of Therapeutic Bacteriophages in Nosocomial Infection Management. Frontiers in Microbiology, 12.

Yacoby, I., et al. (2007). Targeted drug-carrying bacteriophages as antibacterial nanomedicines. Antimicrobial agents and chemotherapy, 51 (6), 2156-2163.

Zhvania, P., et al. (2017). Phage therapy in a 16-year-old boy with Netherton syndrome. Frontiers in medicine, 4, 94.

Publicado

20/08/2022

Cómo citar

SILVA, L. O. P. da .; NOGUEIRA, J. M. da R. . Uso de bacteriófagos como alternativa en el control de infecciones bacterianas. Research, Society and Development, [S. l.], v. 11, n. 11, p. e200111133619, 2022. DOI: 10.33448/rsd-v11i11.33619. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/33619. Acesso em: 23 nov. 2024.

Número

Sección

Revisiones