Fuentes de energía renovable: investigación, tendencias y perspectivas sobre prácticas sostenibles

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i11.33893

Palabras clave:

Fuentes de energía renovable; Prácticas sostenibles; Tecnologías solares y eólicas.

Resumen

El uso de fuentes de energía renovables en diversos campos del conocimiento es una fuerte tendencia mundial, gracias a las numerosas ventajas socioeconómicas y ambientales que se derivan de la adopción de prácticas sostenibles, que permiten promover un equilibrio entre la preservación del medio ambiente y el bienestar de las personas. gente. ser de

la población actual y futura. El desarrollo de nuevas tecnologías basadas en energía solar y eólica se ha considerado una de las muchas soluciones clave para satisfacer la alta demanda energética a nivel mundial. Sin embargo, a pesar de los muchos beneficios relacionados con la sostenibilidad, el escenario mundial muestra que aún no tenemos un escenario tan sostenible y sigue escalando posiciones lentamente, por cuestiones que incluyen apoyo financiero del gobierno, incentivos a la investigación, desconocimiento de la población, una visión sostenible de los empresarios y entre otros factores. En este trabajo se realizó una revisión sistemática de la literatura para evaluar las principales medidas, tendencias adoptadas y una mayor comprensión de las fuentes de energía renovables. En este artículo se discuten algunas ventajas y desventajas que involucran las tecnologías solar y eólica, para contribuir significativamente a la lista de las principales prácticas y perspectivas sobre la generación y producción de energía a partir de ellas. Los resultados de estos estudios indican que, a pesar de las inversiones realizadas, se esperan más inversiones en investigación e instalaciones de parques eólicos y mejores condiciones de financiación para la adhesión de paneles solares y aerogeneradores, con el objetivo de superar las limitaciones actuales de la industria de energías renovables. teniendo en cuenta dado que este es un mercado que aún necesita exploración e inversión en nuevas investigaciones para ampliar esta gran área de estudio.

Citas

ABEEólica. (2021). Associação Brasileira de Energia Eólica e Novas Tecnologias. Boletimanual. https://abeeolica.org.br/energia-eolica/dados-abeeolica/

Aberle, A. G. (2009). Thin-film solar cells. Thin Solid Films, 517(17), 4706–4710.

Alim, M. A., Tao, Z., Abden, M. J., Rahman, A., Samali, B. (2020). Improving performance of solar roof tiles by incorporating phase change material. Solar Energy, 207, 1308–1320.

Alsharif, M. H., Kim, J., Kim, J. H. (2018). Opportunities and challenges of solar and wind energy in South Korea: A review. Sustainability, 10(6), 1822.

Balaji, V. R., & Sudha, M. (2016). Solar powered auto irrigation system. International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE), 20(2), 203–206.

Barroso, L. L., Oliveira, M., Galvão, M. E. M., Silva, G. J., Cunha, D., Silva, L. S., Cristo, J. P., Antunes, G.N. Cabral, E. L., Silva, J. A. C (2022). Aspectos gerais sobre a viabilidade de instalação de Energia Eólica no Brasil. Research, Society and Development, 11(9), e308911931781–e308911931781.

Bünzli, J.-C. G., Eliseeva, S. V. (2010). Lanthanide NIR luminescence for telecommunications, bioanalyses and solar energy conversion. Journal of Rare Earths, 28(6), 824–842.

Chaudhuri, A., Datta, R., Kumar, M. P., Davim, J. P., Pramanik, S. (2022). Energy conversion strategies for wind energy system: Electrical, mechanical and material aspects. Materials, 15(3), 1232.

Costa Ridelensky, M. (2021). A sustentabilidade ambiental de projetos de sucesso com diferentes alternativas de energia. Research, Society and Development, 10(11), e194101118380-e194101118380.

Efaz, E. T., Rhaman, M. M., Imam, S., Bashar, K. L., Kabir, F., Sakib, S. N., Mourtaza, M. D. E. (2021). A review of major technologies of thin-film solar cells. Engineering Research Express. 3. 032001.

EPE. (2021). Balanço energético nacional 2021. Empresa de pesqusia energetica. https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-601/topico-596/BEN2021.pdf

Gasparin, F. B. (2022). A Influência de Políticas Públicas para o Progresso da Geração Solar Fotovoltaica e Diversificação da Matriz Energética Brasileira. Revista Virtual de Química, 14(1), 77-81.

Goldemberg, J., Chu, S. (2010). Um futuro com energia sustentável: Iluminando o Caminho. FAPESP, Inter Academy Council.

Handore, A. V, Khandelwal, S. R., Karmakar, R., Jagtap, A. S., Handore, D. V. (2022). Bioconcrete: the promising prospect for green construction. In Ecological and Health Effects of Building Materials, 567–584.

Hoang, A. T., Nižetić, S., Olcer, A. I., Ong, H. C., Chen, W.-H., Chong, C. T., Thomas, S., Bandh, S. A., Nguyen, X. P. (2021). Impacts of COVID-19 pandemic on the global energy system and the shift progress to renewable energy: Opportunities, challenges, and policy implications. Energy Policy, 154, 112322.

Hosenuzzaman, M., Rahim, N. A., Selvaraj, J., Hasanuzzaman, M., Malek, A. B. M. A., Nahar, A. (2015). Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation. Renewable and Sustainable Energy Reviews, 41, 284–297.

Hou, W., Xiao, Y., Han, G., & Lin, J.-Y. (2019). The applications of polymers in solar cells: A review. Polymers, 11(1), 143.

Hu, Y., Bai, Y., Luo, B., Wang, S., Hu, H., Chen, P., Lyu, M., Shapter, J., Rowan, A., Wang, L. (2019). A portable and efficient solar‐rechargeable battery with ultrafast photo‐charge/discharge rate. Advanced Energy Materials, 9(28), 1900872.

Hussein, A. A.-H., Batarseh, I. (2011). A review of charging algorithms for nickel and lithium battery chargers. IEEE Transactions on Vehicular Technology, 60(3), 830–838.

Jelle, B. P., Breivik, C., Røkenes, H. D. (2012). Building integrated photovoltaic products: A state-of-the-art review and future research opportunities. Solar Energy Materials and Solar Cells, 100, 69–96.

Jiang, P., Van Fan, Y., Klemeš, J. J. (2021). Impacts of COVID-19 on energy demand and consumption: Challenges, lessons and emerging opportunities. Applied Energy, 285, 116441.

Kabir, E., Kumar, P., Kumar, S., Adelodun, A. A., Kim, K.-H. (2018). Solar energy: Potential and future prospects. Renewable and Sustainable Energy Reviews, 82, 894–900.

Khan, J., Arsalan, M. H. (2016). Solar power technologies for sustainable electricity generation–A review. Renewable and Sustainable Energy Reviews, 55, 414–425.

Kim, J. Y., Lee, J.-W., Jung, H. S., Shin, H., Park, N.-G. (2020). High-efficiency perovskite solar cells. Chemical Reviews, 120(15), 7867–7918.

Kim, M., Jeong, J., Lu, H., Lee, T. K., Eickemeyer, F. T., Liu, Y., Choi, I. W., Choi, S. J., Jo, Y., Kim, H.-B. (2022). Conformal quantum dot–SnO2 layers as electron transporters for efficient perovskite solar cells. Science, 375(6578), 302–306.

Lakatos, L., Hevessy, G., Kovács, J. (2011). Advantages and disadvantages of solar energy and wind-power utilization. World Futures, 67(6), 395–408.

Lee, C. W., Kim, O. Y., Lee, J. Y. (2014). Organic materials for organic electronic devices. Journal of Industrial and Engineering Chemistry, 20(4), 1198–1208.

Lima, L., Trindade, E., Alencar, L., Alencar, M., Silva, L. (2021). Sustainability in the construction industry: A systematic review of the literature. Journal of Cleaner Production, 289, 125730.

Liu, G., Jia, J., Zhang, K., Jia, X., Yin, Q., Zhong, W., Li, L., Huang, F., Cao, Y. (2019). 15% efficiency tandem organic solar cell based on a novel highly efficient wide‐bandgap nonfullerene acceptor with low energy loss. Advanced Energy Materials, 9(11), 1803657.

Liu, H., Yao, P., Latif, S., Aslam, S., Iqbal, N. (2022). Impact of Green financing, FinTech, and financial inclusion on energy efficiency. Environmental Science and Pollution Research, 29(13), 18955–18966.

Machado, C. T., Miranda, F. S. (2015). Energia Solar Fotovoltaica: uma breve revisão. Revista Virtual de Química, 7(1), 126–143.

Manthiram, A., Fu, Y., Su, Y.-S. (2013). Challenges and prospects of lithium–sulfur batteries. Accounts of Chemical Research, 46(5), 1125–1134.

Marques, W., Santos, A., Alves, E., Rollim, J., Pinto, M. (2022). O sol nasce para todos:sustentabilidade mediante telhas fotovoltaicas de concreto. Revista de Engenharia e Tecnologia, 14(1).

Martin-Ramos, P., Ramos-Silva, M. (2018). Lanthanide-based multifunctional materials: from OLEDs to SIMs. Elsevier.

Mekhilef, S., Faramarzi, S. Z., Saidur, R., Salam, Z. (2013). The application of solar technologies for sustainable development of agricultural sector. Renewable and Sustainable Energy Reviews, 18, 583–594.

Mishra, A., Bäuerle, P. (2012). Small molecule organic semiconductors on the move: promises for future solar energy technology. Angewandte Chemie International Edition, 51(9), 2020–2067.

Muneer, T., Gago, E. J., Berrizbeitia, S. E. (2022). The Coming of Age of Solar and Wind Power. Springer Nature.

Okasha, A. M., Ibrahim, H. G., Elmetwalli, A. H., Khedher, K. M., Yaseen, Z. M., Elsayed, S. (2021). Designing low-cost capacitive-based soil moisture sensor and smart monitoring unit operated by solar cells for greenhouse irrigation management. Sensors, 21(16), 5387.

Rahman, M. M., Khan, I., Field, D. L., Techato, K., Alameh, K. (2022). Powering agriculture: Present status, future potential, and challenges of renewable energy applications. Renewable Energy, 188, 731–749.

REN21. (2022). Renewable Energy Policy Network for the 21st Century. https://www.ren21.net/wp-content/uploads/2019/05/GSR2022_Full_Report.pdf

Rühle, S., Shalom, M., Zaban, A. (2010). Quantum‐dot‐sensitized solar cells. ChemPhysChem, 11(11), 2290–2304.

Sandoval Aguilar, R., Michaelides, E. E. (2021). Microgrid for a Cluster of Grid Independent Buildings Powered by Solar and Wind Energy. Applied Sciences, 11(19), 9214.

Schuss, C., Eichberger, B., Rahkonen, T. (2014). Design specifications and guidelines for efficient solar chargers of mobile phones. 2014 IEEE 11th International Multi-Conference on Systems, Signals & Devices (SSD14), 1–5.

Sehrawat, P., Malik, R. K., Khatkar, S. P., Taxak, V. B. (2021). Highly efficient green-glimmering Y3Al5O12: Er3+ NPs for next generation electro-optic appliances, mainly white-LEDs and solar-cells. Chemical Physics Letters, 773, 138592.

Settino, J., Sant, T., Micallef, C., Farrugia, M., Staines, C. S., Licari, J., Micallef, A. (2018). Overview of solar technologies for electricity, heating and cooling production. Renewable and Sustainable Energy Reviews, 90, 892–909.

Silveira, V. F., Siqueira, J. A. C., do Nascimento, L. F. J., Tokura, L. K., Alovisi, A. M. T., Boas, M. A. V., ... & Debastiani, G. (2021). Comparative study of drip irrigation systems using indoor amorphous photovoltaic panels. Research, Society and Development, 10(11), e125101119288-e125101119288.

Shamshirband, S., Rabczuk, T., Chau, K.-W. (2019). A survey of deep learning techniques: application in wind and solar energy resources. IEEE Access, 7, 164650–164666.

Sharma, S., Jain, K. K., Sharma, A. (2015). Solar cells: in research and applications—a review. Materials Sciences and Applications, 6(12), 1145.

Silva, G. F., Silva, D. P., Silva, I. P., Silva, M. S., Bery, C. C. S., França, F. R. M. (2019). Energias alternativas: tecnologias sustentáveis para o nordeste brasileiro (1st ed.). Associação Acadêmica de Propriedade Intelectual–API.

Stančin, H., Mikulčić, H., Wang, X., Duić, N. (2020). A review on alternative fuels in future energy system. Renewable and Sustainable Energy Reviews, 128, 109927.

Teo, K. Y., Tiong, M. H., Wee, H. Y., Jasin, N., Liu, Z.-Q., Shiu, M. Y., Tang, J. Y., Tsai, J.-K., Rahamathullah, R., Khairul, W. M. (2017). The influence of the push-pull effect and a π-conjugated system in conversion efficiency of bis-chalcone compounds in a dye sensitized solar cell. Journal of Molecular Structure, 1143, 42–48.

Tsuei, C.-H., Sun, W.-S., Kuo, C.-C. (2010). Hybrid sunlight/LED illumination and renewable solar energy saving concepts for indoor lighting. Optics Express, 18(104), A640–A653.

Usman, M., Zeb, Z., Ullah, H., Suliman, M. H., Humayun, M., Ullah, L., Shah, S. N. A., Ahmed, U., Saeed, M. (2022). A review of metal-organic frameworks/graphitic carbon nitride composites for solar-driven green H2 production, CO2 reduction, and water purification. Journal of Environmental Chemical Engineering, 107548.

Wen, J., Zhao, D., Zhang, C. (2020). An overview of electricity powered vehicles: Lithium-ion battery energy storage density and energy conversion efficiency. Renewable Energy, 162, 1629–1648.

Ye, H. Q., Li, Z., Peng, Y., Wang, C. C., Li, T. Y., Zheng, Y. X., Sapelkin, A., Adamopoulos, G., Hernández, I., Wyatt, P. B. (2014). Organo-erbium systems for optical amplification at telecommunications wavelengths. Nature Materials, 13(4), 382–386.

Publicado

29/08/2022

Cómo citar

ARAÚJO, R. S. de .; SOUSA, F. L. N. de .; VANDERLEY, P. S. .; BENTES, S. O. da S.; GOMES, L. M. .; FERREIRA, F. C. L. . Fuentes de energía renovable: investigación, tendencias y perspectivas sobre prácticas sostenibles. Research, Society and Development, [S. l.], v. 11, n. 11, p. e468111133893, 2022. DOI: 10.33448/rsd-v11i11.33893. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/33893. Acesso em: 30 jun. 2024.

Número

Sección

Revisiones