Zoonosis y zoonosis reversa del SARS-CoV-2 bajo la perspectiva de la Salud Única
DOI:
https://doi.org/10.33448/rsd-v11i11.34145Palabras clave:
SARS-CoV-2; Animales; Zoonosis; Zoonosis reversa; Salud única; Pandemia.Resumen
Las zoonosis no son una dinámica unidireccional de infección de animales a humanos. Al igual que con otras enfermedades, se ha demostrado la capacidad de los animales de infectarse con el SARS-CoV-2 a través del contacto con los seres humanos. El objetivo de este artículo es realizar una revisión narrativa, a través del análisis de la literatura científica actual, sobre la posibilidad de zoonosis y zoonosis reversa del SARS-CoV-2 bajo la perspectiva de Salud Única y las posibles implicaciones para la evolución futura del virus. Investigaciones recientes indican que el virus ha mostrado potencial de zoonosis reversa, infectando a mamíferos en varias partes del planeta. Los mustélidos, los hámsters, los felinos y los primates del viejo mundo son los animales que han mostrado una mayor susceptibilidad al SARS-CoV-2. La zoonosis reversa del SARS-CoV-2 ha favorecido la aparición de variantes cuyas mutaciones se han mostrado adaptadas a las distintas características fisiológicas particulares de las especies animales afectadas, con capacidad para volver al ser humano. Es probable que el SARS-CoV-2 sea persistente entre los mamíferos después de la ola pandémica que afectó a la humanidad. Los procesos de mitigación de la zoonosis y la zoonosis inversa del SARS-CoV-2 desde la perspectiva de Salud Única requieren acciones en tres niveles: el entorno humano, las relaciones entre los seres humanos y los animales domésticos o cautivos, y la vigilancia y el control del virus circulante entre los animales de vida libre.
Citas
Aart, A. E., Velkers, F. C., Fischer, E. A. J., Broens, E. M., Egberink, H., Zhao, S., Engelsma, M., Hakze‐van der Honing, R. W., Harders, F., Rooij, M. M. T., Radstake, C., Meijer, P. A., Oude Munnink, B. B., Rond, J., Sikkema, R. S., Spek, A. N., Spierenburg, M., Wolters, W. J., Molenaar, R., … Smit, L. A. M. (2021). SARS‐CoV‐2 infection in cats and dogs in infected mink farms. Transboundary and Emerging Diseases, tbed.14173. https://doi.org/10.1111/tbed.14173
Abreu, F. V. S. de, Macedo, M. V., da Silva, A. J. J., de Oliveira, C. H., de Ottone, V. O., de Almeida, M. A. B., dos Santos, E., da Cardoso, J. C., Campos, A. S., da Silva, C. M. D., da Silva, A. G., de Andrade, M. S., Bernis, V. M. O., Bernis Filho, W. O., de Trindade, G. S., Albuquerque, G. R., da Sevá, A. P., Ribeiro, B. M., Teixeira, D. S., … de Oliveira, D. B. (2021). No Evidence of SARS-CoV-2 Infection in Neotropical Primates Sampled During COVID-19 Pandemic in Minas Gerais and Rio Grande do Sul, Brazil. EcoHealth, 18(4), 414–420. https://doi.org/10.1007/s10393-021-01569-1
Aguiló-Gisbert, J., Padilla-Blanco, M., Lizana, V., Maiques, E., Muñoz-Baquero, M., Chillida-Martínez, E., Cardells, J., & Rubio-Guerri, C. (2021). First Description of SARS-CoV-2 Infection in Two Feral American Mink (Neovison vison) Caught in the Wild. Animals, 11(5), 1422. https://doi.org/10.3390/ani11051422
Alexander, M. R., Schoeder, C. T., Brown, J. A., Smart, C. D., Moth, C., Wikswo, J. P., Capra, J. A., Meiler, J., Chen, W., & Madhur, M. S. (2020). Predicting susceptibility to SARS‐CoV‐2 infection based on structural differences in ACE2 across species. The FASEB Journal, 34(12), 15946–15960. https://doi.org/10.1096/fj.202001808R
Allender, M. C., Adkesson, M. J., Langan, J. N., Delk, K. W., Meehan, T., Aitken‐Palmer, C., McEntire, M. M., Killian, M. L., Torchetti, M., Morales, S. A., Austin, C., Fredrickson, R., Olmstead, C., Ke, R., Smith, R., Hostnik, E. T., Terio, K., & Wang, L. (2022). Multi‐species outbreak of SARS‐CoV‐2 Delta variant in a zoological institution, with the detection in two new families of carnivores. Transboundary and Emerging Diseases, tbed.14662. https://doi.org/10.1111/tbed.14662
Almeida, M. A. B. de, Santos, E. dos, Cardoso, J. da C., Fonseca, D. F. da, Noll, C. A., Silveira, V. R., Maeda, A. Y., Souza, R. P. de, Kanamura, C., & Brasil, R. A. (2012). Yellow fever outbreak affecting Alouatta populations in southern Brazil (Rio Grande do Sul State), 2008-2009. American Journal of Primatology, 74(1), 68–76. https://doi.org/10.1002/ajp.21010
Andrade, M. de S., Campos, F. S., Campos, A. A. S., Abreu, F. V. S., Melo, F. L., Sevá, A. da P., Cardoso, J. da C., Dos Santos, E., Born, L. C., Silva, C. M. D. da, Müller, N. F. D., Oliveira, C. H. de, Silva, A. J. J. da, Simonini-Teixeira, D., Bernal-Valle, S., Mares-Guia, M. A. M. M., Albuquerque, G. R., Romano, A. P. M., Franco, A. C., … Almeida, M. A. B. de. (2021). Real-Time Genomic Surveillance during the 2021 Re-Emergence of the Yellow Fever Virus in Rio Grande do Sul State, Brazil. Viruses, 13(10), 1976. https://doi.org/10.3390/v13101976
Armon, R., & Cheruti, U. (2012). Environmental aspects of zoonotic diseases (1. publ). IWA Publ.
Auerswald, H., Low, D. H. W., Siegers, J. Y., Ou, T., Kol, S., In, S., Linster, M., Su, Y. C. F., Mendenhall, I. H., Duong, V., Smith, G. J. D., & Karlsson, E. A. (2022). A Look inside the Replication Dynamics of SARS-CoV-2 in Blyth’s Horseshoe Bat (Rhinolophus lepidus) Kidney Cells. Microbiology Spectrum, 10(3), e00449-22. https://doi.org/10.1128/spectrum.00449-22
Bacellar, A. E. D. F., Cronemberger de Faria, C., de Souza Soares, L., de Sousa Stein, D., Alves de Oliveira Dumard Siqueira, H., Deiss de Faria, I., & Ramos Hentz Pinto, Ú. (2022). Influência da Disponibilidade de Alimentos de Origem Antrópica sobre o Comportamento Natural de Nasua nasua (Linnaeus, 1766) no Parque Nacional da Serra dos Órgãos, Teresópolis, Rio de Janeiro. Biodiversidade Brasileira - BioBrasil, 12(1), 44–59. https://doi.org/10.37002/biobrasil.v12i1.1844
Barcelo, D. (2020). An environmental and health perspective for COVID-19 outbreak: Meteorology and air quality influence, sewage epidemiology indicator, hospitals disinfection, drug therapies and recommendations. Journal of Environmental Chemical Engineering, 8(4), 104006. https://doi.org/10.1016/j.jece.2020.104006
Barroso, R., Vieira-Pires, A., Antunes, A., & Fidalgo-Carvalho, I. (2022). Susceptibility of Pets to SARS-CoV-2 Infection: Lessons from a Seroepidemiologic Survey of Cats and Dogs in Portugal. Microorganisms, 10(2), 345. https://doi.org/10.3390/microorganisms10020345
Barroso‐Arévalo, S., Barneto, A., Ramos, Á. M., Rivera, B., Sánchez, R., Sánchez‐Morales, L., Pérez‐Sancho, M., Buendía, A., Ferreras, E., Ortiz‐Menéndez, J. C., Moreno, I., Serres, C., Vela, C., Risalde, M. Á., Domínguez, L., & Sánchez‐Vizcaíno, J. M. (2022). Large‐scale study on virological and serological prevalence of SARS‐CoV‐2 in cats and dogs in Spain. Transboundary and Emerging Diseases, 69(4). https://doi.org/10.1111/tbed.14366
Bartlett, S. L., Diel, D. G., Wang, L., Zec, S., Laverack, M., Martins, M., Caserta, L. C., Killian, M. L., Terio, K., Olmstead, C., Delaney, M. A., Stokol, T., Ivančić, M., Jenkins-Moore, M., Ingerman, K., Teegan, T., McCann, C., Thomas, P., McAloose, D., … Calle, P. P. (2021). SARS-CoV-2 infection and longitudinal fecal screening in Malayan tigers (Panthera tigris jacksoni), Amur tigers (Panthera tigris altaica) and African lions (Panthera leo krugeri) at the Bronxk zoo, New York, USA. Journal of Zoo and Wildlife Medicine, 51(4). https://doi.org/10.1638/2020-0171
Barua, A., Grot, N., & Plawski, A. (2022). The basis of mink susceptibility to SARS-CoV-2 infection. Journal of Applied Genetics. https://doi.org/10.1007/s13353-022-00689-w
Bashor, L., Gagne, R. B., Bosco-Lauth, A. M., Bowen, R. A., Stenglein, M., & VandeWoude, S. (2021). SARS-CoV-2 evolution in animals suggests mechanisms for rapid variant selection. Proceedings of the National Academy of Sciences, 118(44), e2105253118. https://doi.org/10.1073/pnas.2105253118
BBC. (2021, 4 de dezembro). Belgian Zoo Hippos Test positive for covid. BBC News. https://www.bbc.com/news/world-europe-59516896
Bhardwaj, A., Sapra, L., Saini, C., Azam, Z., Mishra, P. K., Verma, B., Mishra, G. C., & Srivastava, R. K. (2022). COVID-19: Immunology, Immunopathogenesis and Potential Therapies. International Reviews of Immunology, 41(2), 171–206. https://doi.org/10.1080/08830185.2021.1883600
Bhattacharjee, M. J., Lin, J.-J., Chang, C.-Y., Chiou, Y.-T., Li, T.-N., Tai, C.-W., Shiu, T.-F., Chen, C.-A., Chou, C.-Y., Chakraborty, P., Tseng, Y. Y., Wang, L. H.-C., & Li, W.-H. (2021). Identifying Primate ACE2 Variants That Confer Resistance to SARS-CoV-2. Molecular Biology and Evolution, 38(7), 2715–2731. https://doi.org/10.1093/molbev/msab060
Bivins, A., Greaves, J., Fischer, R., Yinda, K. C., Ahmed, W., Kitajima, M., Munster, V. J., & Bibby, K. (2020). Persistence of SARS-CoV-2 in Water and Wastewater. Environmental Science & Technology Letters, 7(12), 937–942. https://doi.org/10.1021/acs.estlett.0c00730
Blaurock, C., Breithaupt, A., Weber, S., Wylezich, C., Keller, M., Mohl, B.-P., Görlich, D., Groschup, M. H., Sadeghi, B., Höper, D., Mettenleiter, T. C., & Balkema-Buschmann, A. (2022). Compellingly high SARS-CoV-2 susceptibility of Golden Syrian hamsters suggests multiple zoonotic infections of pet hamsters during the COVID-19 pandemic [Preprint]. Microbiology. https://doi.org/10.1101/2022.04.19.488826
Bosco-Lauth, A. M., Hartwig, A. E., Porter, S. M., Gordy, P. W., Nehring, M., Byas, A. D., VandeWoude, S., Ragan, I. K., Maison, R. M., & Bowen, R. A. (2020). Experimental infection of domestic dogs and cats with SARS-CoV-2: Pathogenesis, transmission, and response to reexposure in cats. Proceedings of the National Academy of Sciences, 117(42), 26382–26388. https://doi.org/10.1073/pnas.2013102117
Bouricha, E. M., Hakmi, M., Akachar, J., Belyamani, L., & Ibrahimi, A. (2020). In silico analysis of ACE2 orthologues to predict animal host range with high susceptibility to SARS-CoV-2. 3 Biotech, 10(11), 483. https://doi.org/10.1007/s13205-020-02471-3
Brandão, L. N. S., Homochiski, D. P., Oliveira, L. B. de, Oliveira, R. M. S. de, & Maciel, S. A. (2021). Detection of SARS-CoV-2 by the RT-qPCR in domestic cats. Research, Society and Development, 10(9), e40110918184. https://doi.org/10.33448/rsd-v10i9.18184
Braun, K. M., Moreno, G. K., Halfmann, P. J., Hodcroft, E. B., Baker, D. A., Boehm, E. C., Weiler, A. M., Haj, A. K., Hatta, M., Chiba, S., Maemura, T., Kawaoka, Y., Koelle, K., O’Connor, D. H., & Friedrich, T. C. (2021). Transmission of SARS-CoV-2 in domestic cats imposes a narrow bottleneck. PLOS Pathogens, 17(2), e1009373. https://doi.org/10.1371/journal.ppat.1009373
Briceño-Méndez, M., Contreras-Perera, Y., & Montiel, S. (2021). Subsistence Hunting During the COVID-19 Pandemic: The Case of the White-Tailed Deer ( Odocoileus virginianus ) in Rural Communities of Calakmul, Campeche, Mexico. Tropical Conservation Science, 14, 194008292110667. https://doi.org/10.1177/19400829211066713
Cavanagh, D., & Britton, P. (2008). Coronaviruses: General Features. Em Encyclopedia of Virology (p. 549–554). Elsevier. https://doi.org/10.1016/B978-012374410-4.00370-8
Chaintoutis, S. C., Siarkou, V. I., Mylonakis, M. E., Kazakos, G. M., Skeva, P., Bampali, M., Dimitriou, M., Dovrolis, N., Polizopoulou, Z. S., Karakasiliotis, I., & Dovas, C. I. (2022). Limited cross‐species transmission and absence of mutations associated with SARS‐CoV‐2 adaptation in cats: A case study of infection in a small household setting. Transboundary and Emerging Diseases, 69(3), 1606–1616. https://doi.org/10.1111/tbed.14132
Chandler, J. C., Bevins, S. N., Ellis, J. W., Linder, T. J., Tell, R. M., Jenkins-Moore, M., Root, J. J., Lenoch, J. B., Robbe-Austerman, S., DeLiberto, T. J., Gidlewski, T., Kim Torchetti, M., & Shriner, S. A. (2021). SARS-CoV-2 exposure in wild white-tailed deer (Odocoileus virginianus). Proceedings of the National Academy of Sciences, 118(47), e2114828118. https://doi.org/10.1073/pnas.2114828118
Clayton, E., Ackerley, J., Aelmans, M., Ali, N., Ashcroft, Z., Ashton, C., Barker, R., Budryte, V., Burrows, C., Cai, S., Callaghan, A., Carberry, J., Chatwin, R., Davies, I., Farlow, C., Gamblin, S., Iacobut, A., Lambe, A., Lynch, F., Munir, M. (2022). Structural Bases of Zoonotic and Zooanthroponotic Transmission of SARS-CoV-2. Viruses, 14(2), 418. https://doi.org/10.3390/v14020418
Cordeiro, A. M., Oliveira, G. M., Renteria, J. M., & Guimarães C. A. (2007). GERS-Rio. Revisão sistemática: Uma revisão narrativa. Rev Col Bras Cir. 34(6).
ISSN 0100-6991. https://doi.org/10.1590/S0100-69912007000600012
Cox-Witton, K., Baker, M. L., Edson, D., Peel, A. J., Welbergen, J. A., & Field, H. (2021). Risk of SARS-CoV-2 transmission from humans to bats – An Australian assessment. One Health, 13, 100247. https://doi.org/10.1016/j.onehlt.2021.100247
Cui, S., Liu, Y., Zhao, J., Peng, X., Lu, G., Shi, W., Pan, Y., Zhang, D., Yang, P., & Wang, Q. (2022). An Updated Review on SARS-CoV-2 Infection in Animals. Viruses, 14(7), 1527. https://doi.org/10.3390/v14071527
Curukoglu, A., Ergoren, M., Ozgencil, F., Sayiner, S., Ince, M., & Sanlidag, T. (2021). First direct human‐to‐cat transmission of the SARS‐CoV ‐2 B.1.1.7 variant. Australian Veterinary Journal, 99(11), 482–488. https://doi.org/10.1111/avj.13109
Cushing, A. C., Sawatzki, K., Grome, H. N., Puryear, W. B., Kelly, N., & Runstadler, J. (2021). Duration of antigens shedding and development of antibody titers inMalayan tigers (Panthera tigris jacksoni) naturally infected with SARS-CoV-2. Journal of Zoo and Wildlife Medicine, 52(4). https://doi.org/10.1638/2021-0042
Dakroub, H., Russo, D., Cistrone, L., Serra, F., Fusco, G., De Carlo, E., & Amoroso, M. G. (2022). A First Assessment of SARS-CoV-2 Circulation in Bats of Central–Southern Italy. Pathogens, 11(7), 742. https://doi.org/10.3390/pathogens11070742
Damas, J., Hughes, G. M., Keough, K. C., Painter, C. A., Persky, N. S., Corbo, M., Hiller, M., Koepfli, K.-P., Pfenning, A. R., Zhao, H., Genereux, D. P., Swofford, R., Pollard, K. S., Ryder, O. A., Nweeia, M. T., Lindblad-Toh, K., Teeling, E. C., Karlsson, E. K., & Lewin, H. A. (2020). Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates. Proceedings of the National Academy of Sciences, 117(36), 22311–22322. https://doi.org/10.1073/pnas.2010146117
Demeny, K., McLoon, M., Winesett, B., Fastner, J., Hammerer, E., & Pauli, J. N. (2019). Food subsidies of raccoons ( Procyon lotor ) in anthropogenic landscapes. Canadian Journal of Zoology, 97(7), 654–657. https://doi.org/10.1139/cjz-2018-0286
Devaux, C. A., Pinault, L., Osman, I. O., & Raoult, D. (2021). Can ACE2 Receptor Polymorphism Predict Species Susceptibility to SARS-CoV-2? Frontiers in Public Health, 8, 608765. https://doi.org/10.3389/fpubh.2020.608765
Díaz, A. V., Walker, M., & Webster, J. P. (2021). Surveillance and control of SARS‐CoV‐2 in mustelids: An evolutionary perspective. Evolutionary Applications, 14(12), 2715–2725. https://doi.org/10.1111/eva.13310
Dowall, S., Salguero, F. J., Wiblin, N., Fotheringham, S., Hatch, G., Parks, S., Gowan, K., Harris, D., Carnell, O., Fell, R., Watson, R., Graham, V., Gooch, K., Hall, Y., Mizen, S., & Hewson, R. (2021). Development of a Hamster Natural Transmission Model of SARS-CoV-2 Infection. Viruses, 13(11), 2251. https://doi.org/10.3390/v13112251
Dyer, O. (2020). COVID-19: Denmark to kill 17 million minks over mutation that could undermine vaccine effort. BMJ, m4338. https://doi.org/10.1136/bmj.m4338
Eckstrand, C. D., Baldwin, T. J., Rood, K. A., Clayton, M. J., Lott, J. K., Wolking, R. M., Bradway, D. S., & Baszler, T. (2021). An outbreak of SARS-CoV-2 with high mortality in mink (Neovison vison) on multiple Utah farms. PLOS Pathogens, 17(11), e1009952. https://doi.org/10.1371/journal.ppat.1009952
European Centre for Disease Prevention and Control. MERS-CoV worldwide overview – 5 July 2020. Disponível em: https://www.ecdc.europa.eu/en/middle-east-respiratory-syndrome-coronavirus-mers-cov-situation-update
European Food Safety Authority and European Centre for Disease Prevention and Control, Boklund, A., Gortázar, C., Pasquali, P., Roberts, H., Nielsen, S. S., Stahl, K., Stegeman, A., Baldinelli, F., Broglia, A., Van Der Stede, Y., Adlhoch, C., Alm, E., Melidou, A., & Mirinaviciute, G. (2021). Monitoring of SARS‐CoV‐2 infection in mustelids. EFSA Journal, 19(3). https://doi.org/10.2903/j.efsa.2021.6459
Evans, D. J. (2008). Viral Receptors. Em Encyclopedia of Virology (p. 319–324). Elsevier. https://doi.org/10.1016/B978-012374410-4.00531-8
Feng, Y., & Xiao, L. (2011). Zoonotic Potential and Molecular Epidemiology of Giardia Species and Giardiasis. Clinical Microbiology Reviews, 24(1), 110–140. https://doi.org/10.1128/CMR.00033-10
Fagre, A., Lewis, J., Eckley, M., Zhan, S., Rocha, S. M., Sexton, N. R., Burke, B., Geiss, B., Peersen, O., Bass, T., Kading, R., Rovnak, J., Ebel, G. D., Tjalkens, R. B., Aboellail, T., & Schountz, T. (2021). SARS-CoV-2 infection, neuropathogenesis and transmission among deer mice: Implications for spillback to New World rodents. PLOS Pathogens, 17(5), e1009585. https://doi.org/10.1371/journal.ppat.1009585
Fernández-Bellon, H., Rodon, J., Fernández-Bastit, L., Almagro, V., Padilla-Solé, P., Lorca-Oró, C., Valle, R., Roca, N., Grazioli, S., Trogu, T., Bensaid, A., Carrillo, J., Izquierdo-Useros, N., Blanco, J., Parera, M., Noguera-Julián, M., Clotet, B., Moreno, A., Segalés, J., & Vergara-Alert, J. (2021). Monitoring Natural SARS-CoV-2 Infection in Lions (Panthera leo) at the Barcelona Zoo: Viral Dynamics and Host Responses. Viruses, 13(9), 1683. https://doi.org/10.3390/v13091683
Forni, D., Cagliani, R., Clerici, M., & Sironi, M. (2017). Molecular Evolution of Human Coronavirus Genomes. Trends in Microbiology, 25(1), 35–48. https://doi.org/10.1016/j.tim.2016.09.001
Franklin, A. B., & Bevins, S. N. (2020). Spillover of SARS-CoV-2 into novel wild hosts in North America: A conceptual model for perpetuation of the pathogen. Science of The Total Environment, 733, 139358. https://doi.org/10.1016/j.scitotenv.2020.139358
Freuling, C. M., Breithaupt, A., Müller, T., Sehl, J., Balkema-Buschmann, A., Rissmann, M., Klein, A., Wylezich, C., Höper, D., Wernike, K., Aebischer, A., Hoffmann, D., Friedrichs, V., Dorhoi, A., Groschup, M. H., Beer, M., & Mettenleiter, T. C. (2020). Susceptibility of Raccoon Dogs for Experimental SARS-CoV-2 Infection. Emerging Infectious Diseases, 26(12), 2982–2985. https://doi.org/10.3201/eid2612.203733
Frutos, R., & Devaux, C. A. (2020). Mass culling of minks to protect the COVID-19 vaccines: Is it rational? New Microbes and New Infections, 38, 100816. https://doi.org/10.1016/j.nmni.2020.100816
Gao, S., Luan, J., Cui, H., & Zhang, L. (2021). ACE2 isoform diversity predicts the host susceptibility of SARS‐CoV‐2. Transboundary and Emerging Diseases, 68(3), 1026–1032. https://doi.org/10.1111/tbed.13773
Gaudreault, N. N., Trujillo, J. D., Carossino, M., Meekins, D. A., Morozov, I., Madden, D. W., Indran, S. V., Bold, D., Balaraman, V., Kwon, T., Artiaga, B. L., Cool, K., García-Sastre, A., Ma, W., Wilson, W. C., Henningson, J., Balasuriya, U. B. R., & Richt, J. A. (2020). SARS-CoV-2 infection, disease and transmission in domestic cats. Emerging Microbes & Infections, 9(1), 2322–2332. https://doi.org/10.1080/22221751.2020.1833687
Gibbons, A. (2021). Captive gorillas test positive for coronavirus. Science. https://doi.org/10.1126/science.abg5458
Giner, J., Villanueva-Saz, S., Tobajas, A. P., Pérez, M. D., González, A., Verde, M., Yzuel, A., García-García, A., Taleb, V., Lira-Navarrete, E., Hurtado-Guerrero, R., Pardo, J., Santiago, L., Paño, J. R., Ruíz, H., Lacasta, D., & Fernández, A. (2021). SARS-CoV-2 Seroprevalence in Household Domestic Ferrets (Mustela putorius furo). Animals, 11(3), 667. https://doi.org/10.3390/ani11030667
Giraldo-Ramirez, S., Rendon-Marin, S., Jaimes, J. A., Martinez-Gutierrez, M., & Ruiz-Saenz, J. (2021). SARS-CoV-2 Clinical Outcome in Domestic and Wild Cats: A Systematic Review. Animals, 11(7), 2056. https://doi.org/10.3390/ani11072056
Goldstein, S. A., Brown, J., Pedersen, B. S., Quinlan, A. R., & Elde, N. C. (2021). Extensive recombination-driven coronavirus diversification expands the pool of potential pandemic pathogens [Preprint]. Evolutionary Biology. https://doi.org/10.1101/2021.02.03.429646
Gortázar, C., Barroso-Arévalo, S., Ferreras-Colino, E., Isla, J., de la Fuente, G., Rivera, B., Domínguez, L., de la Fuente, J., & Sánchez-Vizcaíno, J. M. (2021). Natural SARS-CoV-2 Infection in Kept Ferrets, Spain. Emerging Infectious Diseases, 27(7), 1994–1996. https://doi.org/10.3201/eid2707.210096
Grome, H. N., Meyer, B., Read, E., Buchanan, M., Cushing, A., Sawatzki, K., Levinson, K. J., Thomas, L. S., Perry, Z., Uehara, A., Tao, Y., Queen, K., Tong, S., Ghai, R., Fill, M.-M., Jones, T. F., Schaffner, W., & Dunn, J. (2022). SARS-CoV-2 Outbreak among Malayan Tigers and Humans, Tennessee, USA, 2020. Emerging Infectious Diseases, 28(4), 833–836. https://doi.org/10.3201/eid2804.212219
Hale, V. L., Dennis, P. M., McBride, D. S., Nolting, J. M., Madden, C., Huey, D., Ehrlich, M., Grieser, J., Winston, J., Lombardi, D., Gibson, S., Saif, L., Killian, M. L., Lantz, K., Tell, R. M., Torchetti, M., Robbe-Austerman, S., Nelson, M. I., Faith, S. A., & Bowman, A. S. (2022). SARS-CoV-2 infection in free-ranging white-tailed deer. Nature, 602(7897), 481–486. https://doi.org/10.1038/s41586-021-04353-x
Halfmann, P. J., Hatta, M., Chiba, S., Maemura, T., Fan, S., Takeda, M., Kinoshita, N., Hattori, S., Sakai-Tagawa, Y., Iwatsuki-Horimoto, K., Imai, M., & Kawaoka, Y. (2020). Transmission of SARS-CoV-2 in Domestic Cats. New England Journal of Medicine, 383(6), 592–594. https://doi.org/10.1056/NEJMc2013400
Hamer, S. A., Ghai, R. R., Zecca, I. B., Auckland, L. D., Roundy, C. M., Davila, E., Busselman, R. E., Tang, W., Pauvolid‐Corrêa, A., Killian, M. L., Jenkins‐Moore, M., Torchetti, M. K., Robbe Austerman, S., Lim, A., Akpalu, Y., Fischer, R. S. B., Barton Behravesh, C., & Hamer, G. L. (2022). SARS‐CoV‐2 B.1.1.7 variant of concern detected in a pet dog and cat after exposure to a person with COVID‐19, USA. Transboundary and Emerging Diseases, 69(3), 1656–1658. https://doi.org/10.1111/tbed.14122
Hammer, A. S., Quaade, M. L., Rasmussen, T. B., Fonager, J., Rasmussen, M., Mundbjerg, K., Lohse, L., Strandbygaard, B., Jørgensen, C. S., Alfaro-Núñez, A., Rosenstierne, M. W., Boklund, A., Halasa, T., Fomsgaard, A., Belsham, G. J., & Bøtner, A. (2021). SARS-CoV-2 Transmission between Mink ( Neovison vison ) and Humans, Denmark. Emerging Infectious Diseases, 27(2), 547–551. https://doi.org/10.3201/eid2702.203794
Harrington, L. A., Díez‐León, M., Gómez, A., Harrington, A., Macdonald, D. W., Maran, T., Põdra, M., & Roy, S. (2021). Wild American mink ( Neovison vison ) may pose a COVID‐19 threat. Frontiers in Ecology and the Environment, 19(5), 266–267. https://doi.org/10.1002/fee.2344
Harvey, W. T., Carabelli, A. M., Jackson, B., Gupta, R. K., Thomson, E. C., Harrison, E. M., Ludden, C., Reeve, R., Rambaut, A., COVID-19 Genomics UK (COG-UK) Consortium, Peacock, S. J., & Robertson, D. L. (2021). SARS-CoV-2 variants, spike mutations and immune escape. Nature Reviews Microbiology, 19(7), 409–424. https://doi.org/10.1038/s41579-021-00573-0
Hosie, M. J., Epifano, I., Herder, V., Orton, R. J., Stevenson, A., Johnson, N., MacDonald, E., Dunbar, D., McDonald, M., Howie, F., Tennant, B., Herrity, D., Da Silva Filipe, A., Streicker, D. G., the COVID‐19 Genomics UK (COG‐UK) consortium, Willett, B. J., Murcia, P. R., Jarrett, R. F., Robertson, D. L., & Weir, W. (2021). Detection of SARS‐CoV‐2 in respiratory samples from cats in the UK associated with human‐to‐cat transmission. Veterinary Record, 188(8). https://doi.org/10.1002/vetr.247
Islam, A., Ferdous, J., Sayeed, Md. A., Islam, S., Kaisar Rahman, Md., Abedin, J., Saha, O., Hassan, M. M., & Shirin, T. (2021). Spatial epidemiology and genetic diversity of SARS-CoV-2 and related coronaviruses in domestic and wild animals. PLOS ONE, 16(12), e0260635. https://doi.org/10.1371/journal.pone.0260635
Jairak, W., Chamsai, E., Udom, K., Charoenkul, K., Chaiyawong, S., Techakriengkrai, N., Tangwangvivat, R., Suwannakarn, K., & Amonsin, A. (2022). SARS-CoV-2 delta variant infection in domestic dogs and cats, Thailand. Scientific Reports, 12(1), 8403. https://doi.org/10.1038/s41598-022-12468-y
Jones, K. E., Patel, N. G., Levy, M. A., Storeygard, A., Balk, D., Gittleman, J. L., & Daszak, P. (2008). Global trends in emerging infectious diseases. Nature, 451(7181), 990–993. https://doi.org/10.1038/nature06536
Karikalan, M., Chander, V., Mahajan, S., Deol, P., Agrawal, R. K., Nandi, S., Rai, S. K., Mathur, A., Pawde, A., Singh, K. P., & Sharma, G. K. (2021). Natural infection of Delta mutant of SARS‐CoV‐2 in Asiatic lions of India. Transboundary and Emerging Diseases, tbed.14290. https://doi.org/10.1111/tbed.14290
Keller, M., Hagag, I. T., Balzer, J., Beyer, K., Kersebohm, J. C., Sadeghi, B., Wernike, K., Höper, D., Wylezich, C., Beer, M., & Groschup, M. H. (2021). Detection of SARS-CoV-2 variant B.1.1.7 in a cat in Germany. Research in Veterinary Science, 140, 229–232. https://doi.org/10.1016/j.rvsc.2021.09.008
Kim, Y.-I., Kim, S.-G., Kim, S.-M., Kim, E.-H., Park, S.-J., Yu, K.-M., Chang, J.-H., Kim, E. J., Lee, S., Casel, M. A. B., Um, J., Song, M.-S., Jeong, H. W., Lai, V. D., Kim, Y., Chin, B. S., Park, J.-S., Chung, K.-H., Foo, S.-S., … Choi, Y. K. (2020). Infection and Rapid Transmission of SARS-CoV-2 in Ferrets. Cell Host & Microbe, 27(5), 704-709.e2. https://doi.org/10.1016/j.chom.2020.03.023
Klaus, J., Palizzotto, C., Zini, E., Meli, M. L., Leo, C., Egberink, H., Zhao, S., & Hofmann-Lehmann, R. (2021). SARS-CoV-2 Infection and Antibody Response in a Symptomatic Cat from Italy with Intestinal B-Cell Lymphoma. Viruses, 13(3), 527. https://doi.org/10.3390/v13030527
Kok, K.-H., Wong, S.-C., Chan, W.-M., Wen, L., Chu, A. W.-H., Ip, J. D., Lee, L.-K., Wong, I. T.-F., Lo, H. W.-H., Cheng, V. C.-C., Ho, A. Y.-M., Lam, B. H.-S., Tse, H., Lung, D., Ng, K. N. H.-L., Au, A. K.-W., Siu, G. K.-H., & Yuen, K.-Y. (2022). Co-circulation of two SARS-CoV-2 variant strains within imported pet hamsters in Hong Kong. Emerging Microbes & Infections, 11(1), 689–698. https://doi.org/10.1080/22221751.2022.2040922
Koley, T., Madaan, S., Chowdhury, S. R., Kumar, M., Kaur, P., Singh, T. P., & Ethayathulla, A. S. (2021). Structural analysis of COVID-19 spike protein in recognizing the ACE2 receptor of different mammalian species and its susceptibility to viral infection. 3 Biotech, 11(2), 109. https://doi.org/10.1007/s13205-020-02599-2
Konishi, T. (2022). Mutations in SARS-CoV-2 are on the increase against the acquired immunity. PLOS ONE, 17(7), e0271305. https://doi.org/10.1371/journal.pone.0271305
Kuchipudi, S. V., Nelli, R. K., Gontu, A., Satyakumar, R., Surendran Nair, M., & Subbiah, M. (2021). Sialic Acid Receptors: The Key to Solving the Enigma of Zoonotic Virus Spillover. Viruses, 13(2), 262. https://doi.org/10.3390/v13020262
Kuchipudi, S. V., Surendran-Nair, M., Ruden, R. M., Yon, M., Nissly, R. H., Vandegrift, K. J., Nelli, R. K., Li, L., Jayarao, B. M., Maranas, C. D., Levine, N., Willgert, K., Conlan, A. J. K., Olsen, R. J., Davis, J. J., Musser, J. M., Hudson, P. J., & Kapur, V. (2022). Multiple spillovers from humans and onward transmission of SARS-CoV-2 in white-tailed deer. Proceedings of the National Academy of Sciences, 119(6), e2121644119. https://doi.org/10.1073/pnas.2121644119
Kumar, A., Pandey, S. N., Pareek, V., Narayan, R. K., Faiq, M. A., & Kumari, C. (2021). Predicting susceptibility for SARS‐CoV‐2 infection in domestic and wildlife animals using ACE2 protein sequence homology. Zoo Biology, 40(1), 79–85. https://doi.org/10.1002/zoo.21576
Kutter, J. S., de Meulder, D., Bestebroer, T. M., Lexmond, P., Mulders, A., Richard, M., Fouchier, R. A. M., & Herfst, S. (2021). SARS-CoV and SARS-CoV-2 are transmitted through the air between ferrets over more than one meter distance. Nature Communications, 12(1), 1653. https://doi.org/10.1038/s41467-021-21918-6
Lam, S. D., Bordin, N., Waman, V. P., Scholes, H. M., Ashford, P., Sen, N., van Dorp, L., Rauer, C., Dawson, N. L., Pang, C. S. M., Abbasian, M., Sillitoe, I., Edwards, S. J. L., Fraternali, F., Lees, J. G., Santini, J. M., & Orengo, C. A. (2020). SARS-CoV-2 spike protein predicted to form complexes with host receptor protein orthologues from a broad range of mammals. Scientific Reports, 10(1), 16471. https://doi.org/10.1038/s41598-020-71936-5
Larsen, C. S., & Paludan, S. R. (2020). Corona’s new coat: SARS-CoV-2 in Danish minks and implications for travel medicine. Travel Medicine and Infectious Disease, 38, 101922. https://doi.org/10.1016/j.tmaid.2020.101922
Lee, N., Hui, D., Wu, A., Chan, P., Cameron, P., Joynt, G. M., Ahuja, A., Yung, M. Y., Leung, C. B., To, K. F., Lui, S. F., Szeto, C. C., Chung, S., & Sung, J. J. Y. (2003). A Major Outbreak of Severe Acute Respiratory Syndrome in Hong Kong. New England Journal of Medicine, 348(20), 1986–1994. https://doi.org/10.1056/NEJMoa030685
Lee, Y. J., Kim, J. H., Choi, B.-S., Choi, J.-H., & Jeong, Y.-I. (2020). Characterization of Severe Acute Respiratory Syndrome Coronavirus 2 Stability in Multiple Water Matrices. Journal of Korean Medical Science, 35(36), e330. https://doi.org/10.3346/jkms.2020.35.e330
Li, S., Yang, R., Zhang, D., Han, P., Xu, Z., Chen, Q., Zhao, R., Zhao, X., Qu, X., Zheng, A., Wang, L., Li, L., Hu, Y., Zhang, R., Su, C., Niu, S., Zhang, Y., Qi, J., Liu, K., … Gao, G. F. (2022). Cross-species recognition and molecular basis of SARS-CoV-2 and SARS-CoV binding to ACE2s of marine animals. National Science Review, nwac122. https://doi.org/10.1093/nsr/nwac122
Li, Y., & Li, Q. (2022). The Immunology of Zoonotic Infection. Tropical Medicine and Infectious Disease, 7(7), 127. https://doi.org/10.3390/tropicalmed7070127
Liu, Y., Hu, G., Wang, Y., Ren, W., Zhao, X., Ji, F., Zhu, Y., Feng, F., Gong, M., Ju, X., Zhu, Y., Cai, X., Lan, J., Guo, J., Xie, M., Dong, L., Zhu, Z., Na, J., Wu, J., … Ding, Q. (2021). Functional and genetic analysis of viral receptor ACE2 orthologs reveals a broad potential host range of SARS-CoV-2. Proceedings of the National Academy of Sciences, 118(12), e2025373118. https://doi.org/10.1073/pnas.2025373118
Lu, L., Sikkema, R. S., Velkers, F. C., Nieuwenhuijse, D. F., Fischer, E. A. J., Meijer, P. A., Bouwmeester-Vincken, N., Rietveld, A., Wegdam-Blans, M. C. A., Tolsma, P., Koppelman, M., Smit, L. A. M., Hakze-van der Honing, R. W., van der Poel, W. H. M., van der Spek, A. N., Spierenburg, M. A. H., Molenaar, R. J., Rond, J. de, Augustijn, M., … Koopmans, M. P. G. (2021). Adaptation, spread and transmission of SARS-CoV-2 in farmed minks and associated humans in the Netherlands. Nature Communications, 12(1), 6802. https://doi.org/10.1038/s41467-021-27096-9
Lu, S., Zhao, Y., Yu, W., Yang, Y., Gao, J., Wang, J., Kuang, D., Yang, M., Yang, J., Ma, C., Xu, J., Qian, X., Li, H., Zhao, S., Li, J., Wang, H., Long, H., Zhou, J., Luo, F., … Peng, X. (2020). Comparison of nonhuman primates identified the suitable model for COVID-19. Signal Transduction and Targeted Therapy, 5(1), 157. https://doi.org/10.1038/s41392-020-00269-6
Ma, C., & Gong, C. (2021). ACE2 models of frequently contacted animals provide clues of their SARS‐CoV‐2 S protein affinity and viral susceptibility. Journal of Medical Virology, 93(7), 4469–4479. https://doi.org/10.1002/jmv.26953
Mahajan, S., Karikalan, M., Chander, V., Pawde, A. M., Saikumar, G., Semmaran, M., Lakshmi, P. S., Sharma, M., Nandi, S., Singh, K. P., Gupta, V. K., Singh, R. K., & Sharma, G. K. (2022). Systemic infection of SARS-CoV-2 in free ranging Leopard ( Panthera pardus fusca ) in India [Preprint]. Microbiology. https://doi.org/10.1101/2022.01.11.475327
Manes, C., Gollakner, R., & Capua, I. (2020). Could Mustelids spur COVID-19 into a panzootic? Veterinaria Italiana, 56(2), 65–66. https://doi.org/10.12834/VetIt.2375.13627.1
Mangiavacchi, B. M., Martins, L. M., Borges, T. R. B. (2020). As múltiplas vertentes da resposta imune na COVID-19. In Norberg, A. N., Souza, C. H.M., Manhães, F. C., Sant’Anna, N. F. (Orgs). COVID-19: Saúde e Interdisciplinaridade. Campos dos Goytacazes, RJ: Encontrografia.
Mann, R., Perisetti, A., Gajendran, M., Gandhi, Z., Umapathy, C., & Goyal, H. (2020). Clinical Characteristics, Diagnosis, and Treatment of Major Coronavirus Outbreaks. Frontiers in Medicine, 7, 581521. https://doi.org/10.3389/fmed.2020.581521
Marques, A. D., Sherrill-Mix, S., Everett, J. K., Adhikari, H., Reddy, S., Ellis, J. C., Zeliff, H., Greening, S. S., Cannuscio, C. C., Strelau, K. M., Collman, R. G., Kelly, B. J., Rodino, K. G., Bushman, F. D., Gagne, R. B., & Anis, E. (2022). Multiple Introductions of SARS-CoV-2 Alpha and Delta Variants into White-Tailed Deer in Pennsylvania [Preprint]. Infectious Diseases (except HIV/AIDS). https://doi.org/10.1101/2022.02.17.22270679
Martin, J., Klapsa, D., Wilton, T., Zambon, M., Bentley, E., Bujaki, E., Fritzsche, M., Mate, R., & Majumdar, M. (2020). Tracking SARS-CoV-2 in Sewage: Evidence of Changes in Virus Variant Predominance during COVID-19 Pandemic. Viruses, 12(10), 1144. https://doi.org/10.3390/v12101144
Martins, M., Boggiatto, P. M., Buckley, A., Cassmann, E. D., Falkenberg, S., Caserta, L. C., Fernandes, M. H. V., Kanipe, C., Lager, K., Palmer, M. V., & Diel, D. G. (2022). From Deer-to-Deer: SARS-CoV-2 is efficiently transmitted and presents broad tissue tropism and replication sites in white-tailed deer. PLOS Pathogens, 18(3), e1010197. https://doi.org/10.1371/journal.ppat.1010197
Mathavarajah, S., Stoddart, A. K., Gagnon, G. A., & Dellaire, G. (2020). Pandemic danger to the deep: The risk of marine mammals contracting SARS-CoV-2 from wastewater [Preprint]. Ecology. https://doi.org/10.1101/2020.08.13.249904
McAloose, D., Laverack, M., Wang, L., Killian, M. L., Caserta, L. C., Yuan, F., Mitchell, P. K., Queen, K., Mauldin, M. R., Cronk, B. D., Bartlett, S. L., Sykes, J. M., Zec, S., Stokol, T., Ingerman, K., Delaney, M. A., Fredrickson, R., Ivančić, M., Jenkins-Moore, M., … Diel, D. G. (2020). From People to Panthera: Natural SARS-CoV-2 Infection in Tigers and Lions at the Bronx Zoo. MBio, 11(5), e02220-20. https://doi.org/10.1128/mBio.02220-20
Medkour, H., Catheland, S., Boucraut‐Baralon, C., Laidoudi, Y., Sereme, Y., Pingret, J., Million, M., Houhamdi, L., Levasseur, A., Cabassu, J., & Davoust, B. (2022). First evidence of human‐to‐dog transmission of SARS‐CoV‐2 B.1.160 variant in France. Transboundary and Emerging Diseases, 69(4). https://doi.org/10.1111/tbed.14359
Melin, A. D., Janiak, M. C., Marrone, F., Arora, P. S., & Higham, J. P. (2020). Comparative ACE2 variation and primate COVID-19 risk. Communications Biology, 3(1), 641. https://doi.org/10.1038/s42003-020-01370-w
Merad, M., Blish, C. A., Sallusto, F., & Iwasaki, A. (2022). The immunology and immunopathology of COVID-19. Science, 375(6585), 1122–1127. https://doi.org/10.1126/science.abm8108
Mishra, A., Kumar, N., Bhatia, S., Aasdev, A., Kanniappan, S., Sekhar, A. T., Gopinadhan, A., Silambarasan, R., Sreekumar, C., Dubey, C. K., Tripathi, M., Raut, A. A., & Singh, V. P. (2021). SARS-CoV-2 Delta Variant among Asiatic Lions, India. Emerging Infectious Diseases, 27(10), 2723–2725. https://doi.org/10.3201/eid2710.211500
Mohebali, M., Hassanpour, G., Zainali, M., Gouya, M. M., Khayatzadeh, S., Parsaei, M., Sarafraz, N., Hassanzadeh, M., Azarm, A., Salehi-Vaziri, M., Sasani, F., Heidari, Z., Jalali, T., Pouriayevali, M. H., Shoja, Z., Ahmadi, Z., Sadjadi, M., Tavakoli, M., Azad-Manjiri, S., … Zarei, Z. (2022). SARS-CoV-2 in domestic cats (Felis catus) in the northwest of Iran: Evidence for SARS-CoV-2 circulating between human and cats. Virus Research, 310, 198673. https://doi.org/10.1016/j.virusres.2022.198673
Molenaar, R. J., Vreman, S., Hakze-van der Honing, R. W., Zwart, R., de Rond, J., Weesendorp, E., Smit, L. A. M., Koopmans, M., Bouwstra, R., Stegeman, A., & van der Poel, W. H. M. (2020). Clinical and Pathological Findings in SARS-CoV-2 Disease Outbreaks in Farmed Mink ( Neovison vison ). Veterinary Pathology, 57(5), 653–657. https://doi.org/10.1177/0300985820943535
Moreno, E. S., Agostini, I., Holzmann, I., Di Bitetti, M. S., Oklander, L. I., Kowalewski, M. M., Beldomenico, P. M., Goenaga, S., Martínez, M., Lestani, E., Desbiez, A. L., & Miller, P. (2015). Yellow fever impact on brown howler monkeys (Alouatta guariba clamitans) in Argentina: A metamodelling approach based on population viability analysis and epidemiological dynamics. Memórias do Instituto Oswaldo Cruz, 110(7), 865–876. https://doi.org/10.1590/0074-02760150075
Munnink, B. B. O., Sikkema, R. S., Nieuwenhuijse, D. F., Molenaar, R. J., Munger, E., Molenkamp, R., van der Spek, A., Tolsma, P., Rietveld, A., Brouwer, M., Bouwmeester-Vincken, N., Harders, F., Hakze-van der Honing, R., Wegdam-Blans, M. C. A., Bouwstra, R. J., GeurtsvanKessel, C., van der Eijk, A. A., Velkers, F. C., Smit, L. A. M., … Koopmans, M. P. G. (2021). Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science, 371(6525), 172–177. https://doi.org/10.1126/science.abe5901
Munster, V. J., Feldmann, F., Williamson, B. N., van Doremalen, N., Pérez-Pérez, L., Schulz, J., Meade-White, K., Okumura, A., Callison, J., Brumbaugh, B., Avanzato, V. A., Rosenke, R., Hanley, P. W., Saturday, G., Scott, D., Fischer, E. R., & de Wit, E. (2020). Respiratory disease in rhesus macaques inoculated with SARS-CoV-2. Nature, 585(7824), 268–272. https://doi.org/10.1038/s41586-020-2324-7
Musso, N., Costantino, A., La Spina, S., Finocchiaro, A., Andronico, F., Stracquadanio, S., Liotta, L., Visalli, R., & Emmanuele, G. (2020). New SARS-CoV-2 Infection Detected in an Italian Pet Cat by RT-qPCR from Deep Pharyngeal Swab. Pathogens, 9(9), 746. https://doi.org/10.3390/pathogens9090746
Mykytyn, A. Z., Lamers, M. M., Okba, N. M. A., Breugem, T. I., Schipper, D., van den Doel, P. B., van Run, P., van Amerongen, G., de Waal, L., Koopmans, M. P. G., Stittelaar, K. J., van den Brand, J. M. A., & Haagmans, B. L. (2021). Susceptibility of rabbits to SARS-CoV-2. Emerging Microbes & Infections, 10(1), 1–7. https://doi.org/10.1080/22221751.2020.1868951
Naderi, S., Chen, P., Lía Murall, C., Poujol, R., Kraemer, S., Pickering, B. S., Sagan, S. M., & Shapiro, B. J. (2022). Zooanthroponotic transmission of SARS-CoV-2 and host-specific viral mutations revealed by genome-wide phylogenetic analysis [Preprint]. Genomics. https://doi.org/10.1101/2022.06.02.494559
Nagy, A., Stará, M., Vodička, R., Černíková, L., Jiřincová, H., Křivda, V., & Sedlák, K. (2022). Reverse-zoonotic transmission of SARS-CoV-2 lineage alpha (B.1.1.7) to great apes and exotic felids in a zoo in the Czech Republic. Archives of Virology, 167(8), 1681–1685. https://doi.org/10.1007/s00705-022-05469-9
Natale, A., Mazzotta, E., Mason, N., Ceglie, L., Mion, M., Stefani, A., Fincato, A., Bonfante, F., Bortolami, A., Monne, I., Bellinati, L., Guadagno, C., Quaranta, E., Pastori, A., & Terregino, C. (2021). SARS-CoV-2 Natural Infection in a Symptomatic Cat: Diagnostic, Clinical and Medical Management in a One Health Vision. Animals, 11(6), 1640. https://doi.org/10.3390/ani11061640
Negrey, J. D., Reddy, R. B., Scully, E. J., Phillips-Garcia, S., Owens, L. A., Langergraber, K. E., Mitani, J. C., Emery Thompson, M., Wrangham, R. W., Muller, M. N., Otali, E., Machanda, Z., Hyeroba, D., Grindle, K. A., Pappas, T. E., Palmenberg, A. C., Gern, J. E., & Goldberg, T. L. (2019). Simultaneous outbreaks of respiratory disease in wild chimpanzees caused by distinct viruses of human origin. Emerging Microbes & Infections, 8(1), 139–149. https://doi.org/10.1080/22221751.2018.1563456
Norberg, A. N., Norberg, P. R. B. M., Ribeiro, P.C., Queiroz, M. M. C., Castro, J. B. P., Sant’Anna, N. F., Mangiavacchi, B. M. (2020). Cryptosporidium spp. oocysts and Giardia spp. cysts in faeces of capybaras (Hydrochoerus hydrochaeris) from Chico Mendes Natural Municipal Park, city of Rio de Janeiro, Brazil: potential risks for zoonotic transmission. World Journal of Pharmacy and Pharmaceutical Sciences, 9(11), 15–27, https://doi.org/10.20959/wjpps202011-17578
Olival, K. J., Cryan, P. M., Amman, B. R., Baric, R. S., Blehert, D. S., Brook, C. E., Calisher, C. H., Castle, K. T., Coleman, J. T. H., Daszak, P., Epstein, J. H., Field, H., Frick, W. F., Gilbert, A. T., Hayman, D. T. S., Ip, H. S., Karesh, W. B., Johnson, C. K., Kading, R. C., Wang, L.-F. (2020). Possibility for reverse zoonotic transmission of SARS-CoV-2 to free-ranging wildlife: A case study of bats. PLOS Pathogens, 16(9), e1008758. https://doi.org/10.1371/journal.ppat.1008758
Oliveira, M. C. de, Rodrigues Gonçalves, N., Ferreira, P. do C., Dos Santos Honório, A., & De Morais, N. A. (2022). SARS-CoV-2 em cães e gatos – Revisão de literatura. Veterinária e Zootecnia, 29, 1–12. https://doi.org/10.35172/rvz.2022.v29.676
One Health High-Level Expert Panel (OHHLEP), Adisasmito, W. B., Almuhairi, S., Behravesh, C. B., Bilivogui, P., Bukachi, S. A., Casas, N., Cediel Becerra, N., Charron, D. F., Chaudhary, A., Ciacci Zanella, J. R., Cunningham, A. A., Dar, O., Debnath, N., Dungu, B., Farag, E., Gao, G. F., Hayman, D. T. S., Khaitsa, M., … Zhou, L. (2022). One Health: A new definition for a sustainable and healthy future. PLOS Pathogens, 18(6), e1010537. https://doi.org/10.1371/journal.ppat.1010537
Oreshkova, N., Molenaar, R. J., Vreman, S., Harders, F., Oude Munnink, B. B., Hakze-van der Honing, R. W., Gerhards, N., Tolsma, P., Bouwstra, R., Sikkema, R. S., Tacken, M. G., de Rooij, M. M., Weesendorp, E., Engelsma, M. Y., Bruschke, C. J., Smit, L. A., Koopmans, M., van der Poel, W. H., & Stegeman, A. (2020). SARS-CoV-2 infection in farmed minks, the Netherlands, April and May 2020. Eurosurveillance, 25(23). https://doi.org/10.2807/1560-7917.ES.2020.25.23.2001005
Ou, J., Lan, W., Wu, X., Zhao, T., Duan, B., Yang, P., Ren, Y., Quan, L., Zhao, W., Seto, D., Chodosh, J., Luo, Z., Wu, J., & Zhang, Q. (2022). Tracking SARS-CoV-2 Omicron diverse spike gene mutations identifies multiple inter-variant recombination events. Signal Transduction and Targeted Therapy, 7(1), 138. https://doi.org/10.1038/s41392-022-00992-2
Padilla-Blanco, M., Aguiló-Gisbert, J., Rubio, V., Lizana, V., Chillida-Martínez, E., Cardells, J., Maiques, E., & Rubio-Guerri, C. (2022). The Finding of the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) in a Wild Eurasian River Otter (Lutra lutra) Highlights the Need for Viral Surveillance in Wild Mustelids. Frontiers in Veterinary Science, 9, 826991. https://doi.org/10.3389/fvets.2022.826991
Pagani, G., Lai, A., Bergna, A., Rizzo, A., Stranieri, A., Giordano, A., Paltrinieri, S., Lelli, D., Decaro, N., Rusconi, S., Gismondo, M. R., Antinori, S., Lauzi, S., Galli, M., & Zehender, G. (2021). Human-to-Cat SARS-CoV-2 Transmission: Case Report and Full-Genome Sequencing from an Infected Pet and Its Owner in Northern Italy. Pathogens, 10(2), 252. https://doi.org/10.3390/pathogens10020252
Palermo, P. M., Orbegozo, J., Watts, D. M., & Morrill, J. C. (2021). SARS-CoV-2 Neutralizing Antibodies in White-Tailed Deer from Texas. Vector-Borne and Zoonotic Diseases, vbz.2021.0094. https://doi.org/10.1089/vbz.2021.0094
Palmer, M. V., Martins, M., Falkenberg, S., Buckley, A., Caserta, L. C., Mitchell, P. K., Cassmann, E. D., Rollins, A., Zylich, N. C., Renshaw, R. W., Guarino, C., Wagner, B., Lager, K., & Diel, D. G. (2021). Susceptibility of White-Tailed Deer (Odocoileus virginianus) to SARS-CoV-2. Journal of Virology, 95(11), e00083-21. https://doi.org/10.1128/JVI.00083-21
Patania, O. M., Chiba, S., Halfmann, P. J., Hatta, M., Maemura, T., Bernard, K. A., Kawaoka, Y., & Crawford, L. K. (2022). Pulmonary lesions induced by SARS-CoV-2 infection in domestic cats. Veterinary Pathology, 59(4), 696–706. https://doi.org/10.1177/03009858211066840
Patterson, E. I., Elia, G., Grassi, A., Giordano, A., Desario, C., Medardo, M., Smith, S. L., Anderson, E. R., Prince, T., Patterson, G. T., Lorusso, E., Lucente, M. S., Lanave, G., Lauzi, S., Bonfanti, U., Stranieri, A., Martella, V., Solari Basano, F., Barrs, V. R., … Decaro, N. (2020). Evidence of exposure to SARS-CoV-2 in cats and dogs from households in Italy. Nature Communications, 11(1), 6231. https://doi.org/10.1038/s41467-020-20097-0
Peiris, J. S. M., Yuen, K. Y., Osterhaus, A. D. M. E., & Stöhr, K. (2003). The Severe Acute Respiratory Syndrome. New England Journal of Medicine, 349(25), 2431–2441. https://doi.org/10.1056/NEJMra032498
Peiris, M., & Perlman, S. (2022). Unresolved questions in the zoonotic transmission of MERS. Current Opinion in Virology, 52, 258–264. https://doi.org/10.1016/j.coviro.2021.12.013
Pickering, B., Lung, O., Maguire, F., Kruczkiewicz, P., Kotwa, J. D., Buchanan, T., Gagnier, M., Guthrie, J. L., Jardine, C. M., Marchand-Austin, A., Massé, A., McClinchey, H., Nirmalarajah, K., Aftanas, P., Blais-Savoie, J., Chee, H.-Y., Chien, E., Yim, W., Banete, A., … Bowman, J. (2022). Highly divergent white-tailed deer SARS-CoV-2 with potential deer-to-human transmission [Preprint]. Microbiology. https://doi.org/10.1101/2022.02.22.481551
Piplani, S., Singh, P. K., Winkler, D. A., & Petrovsky, N. (2021). In silico comparison of SARS-CoV-2 spike protein-ACE2 binding affinities across species and implications for virus origin. Scientific Reports, 11(1), 13063. https://doi.org/10.1038/s41598-021-92388-5
Possamai, C. B., Rodrigues de Melo, F., Mendes, S. L., & Strier, K. B. (2022). Demographic changes in an Atlantic Forest primate community following a yellow fever outbreak. American Journal of Primatology. https://doi.org/10.1002/ajp.23425
Preziuso, S. (2020). Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Exhibits High Predicted Binding Affinity to ACE2 from Lagomorphs (Rabbits and Pikas). Animals, 10(9), 1460. https://doi.org/10.3390/ani10091460
Rabalski, L., Kosinski, M., Smura, T., Aaltonen, K., Kant, R., Sironen, T., Szewczyk, B., & Grzybek, M. (2020). Detection and molecular characterisation of SARS-CoV-2 in farmed mink ( Neovision vision ) in Poland [Preprint]. Microbiology. https://doi.org/10.1101/2020.12.24.422670
Račnik, J., Kočevar, A., Slavec, B., Korva, M., Rus, K. R., Zakotnik, S., Zorec, T. M., Poljak, M., Matko, M., Rojs, O. Z., & Županc, T. A. (2021). Transmission of SARS-CoV-2 from Human to Domestic Ferret. Emerging Infectious Diseases, 27(9), 2450–2453. https://doi.org/10.3201/eid2709.210774
Richard, M., Kok, A., de Meulder, D., Bestebroer, T. M., Lamers, M. M., Okba, N. M. A., Fentener van Vlissingen, M., Rockx, B., Haagmans, B. L., Koopmans, M. P. G., Fouchier, R. A. M., & Herfst, S. (2020). SARS-CoV-2 is transmitted via contact and via the air between ferrets. Nature Communications, 11(1), 3496. https://doi.org/10.1038/s41467-020-17367-2
Rivero, R., Garay, E., Botero, Y., Serrano-Coll, H., Gastelbondo, B., Muñoz, M., Ballesteros, N., Castañeda, S., Patiño, L. H., Ramirez, J. D., Calderon, A., Guzmán, C., Martinez-Bravo, C., Aleman, A., Arrieta, G., & Mattar, S. (2022). Human-to-dog transmission of SARS-CoV-2, Colombia. Scientific Reports, 12(1), 7880. https://doi.org/10.1038/s41598-022-11847-9
Roberts, A., Vogel, L., Guarner, J., Hayes, N., Murphy, B., Zaki, S., & Subbarao, K. (2005). Severe Acute Respiratory Syndrome Coronavirus Infection of Golden Syrian Hamsters. Journal of Virology, 79(1), 503–511. https://doi.org/10.1128/JVI.79.1.503-511.2005
Rockx, B., Kuiken, T., Herfst, S., Bestebroer, T., Lamers, M. M., Oude Munnink, B. B., de Meulder, D., van Amerongen, G., van den Brand, J., Okba, N. M. A., Schipper, D., van Run, P., Leijten, L., Sikkema, R., Verschoor, E., Verstrepen, B., Bogers, W., Langermans, J., Drosten, C., … Haagmans, B. L. (2020). Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science, 368(6494), 1012–1015. https://doi.org/10.1126/science.abb7314
Rother, E. T. (2007). Revisão sistemática X revisão narrativa. Acta paul. Enferm, 20 (2), p. 5-6.
Ruiz-Arrondo, I., Portillo, A., Palomar, A. M., Santibanez, S., Santibanez, P., Cervera, C., & Oteo, J. A. (2020). Detection of SARS-CoV-2 in pets living with COVID-19 owners diagnosed during the COVID-19 lockdown in Spain: A case of an asymptomatic cat with SARS-CoV-2 in Europe [Preprint]. Epidemiology. https://doi.org/10.1101/2020.05.14.20101444
Ryan, K. A., Bewley, K. R., Fotheringham, S. A., Slack, G. S., Brown, P., Hall, Y., Wand, N. I., Marriott, A. C., Cavell, B. E., Tree, J. A., Allen, L., Aram, M. J., Bean, T. J., Brunt, E., Buttigieg, K. R., Carter, D. P., Cobb, R., Coombes, N. S., Findlay-Wilson, S. J., … Carroll, M. W. (2021). Dose-dependent response to infection with SARS-CoV-2 in the ferret model and evidence of protective immunity. Nature Communications, 12(1), 81. https://doi.org/10.1038/s41467-020-20439-y
Sacchetto, L., Chaves, B. A., Costa, E. R., de Menezes Medeiros, A. S., Gordo, M., Araújo, D. B., Oliveira, D. B. L., da Silva, A. P. B., Negri, A. F., Durigon, E. L., Hanley, K. A., Vasilakis, N., de Lacerda, M. V. G., & Nogueira, M. L. (2021). Lack of Evidence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spillover in Free-Living Neotropical Non-Human Primates, Brazil. Viruses, 13(10), 1933. https://doi.org/10.3390/v13101933
Sawatzki, K., Hill, N. J., Puryear, W. B., Foss, A. D., Stone, J. J., & Runstadler, J. A. (2021). Host barriers to SARS-CoV-2 demonstrated by ferrets in a high-exposure domestic setting. Proceedings of the National Academy of Sciences, 118(18), e2025601118. https://doi.org/10.1073/pnas.2025601118
Saxena, S. K. (Org.). (2020). Coronavirus Disease 2019 (COVID-19): Epidemiology, Pathogenesis, Diagnosis, and Therapeutics. Springer Singapore.
Shan, C., Yao, Y.-F., Yang, X.-L., Zhou, Y.-W., Gao, G., Peng, Y., Yang, L., Hu, X., Xiong, J., Jiang, R.-D., Zhang, H.-J., Gao, X.-X., Peng, C., Min, J., Chen, Y., Si, H.-R., Wu, J., Zhou, P., Wang, Y.-Y., … Yuan, Z.-M. (2020). Infection with novel coronavirus (SARS-CoV-2) causes pneumonia in Rhesus macaques. Cell Research, 30(8), 670–677. https://doi.org/10.1038/s41422-020-0364-z
Shang, J., Wan, Y., Luo, C., Ye, G., Geng, Q., Auerbach, A., & Li, F. (2020). Cell entry mechanisms of SARS-CoV-2. Proceedings of the National Academy of Sciences, 117(21), 11727–11734. https://doi.org/10.1073/pnas.2003138117
Shapiro, J. T., Víquez-R, L., Leopardi, S., Vicente-Santos, A., Mendenhall, I. H., Frick, W. F., Kading, R. C., Medellín, R. A., Racey, P., & Kingston, T. (2021). Setting the Terms for Zoonotic Diseases: Effective Communication for Research, Conservation, and Public Policy. Viruses, 13(7), 1356. https://doi.org/10.3390/v13071356
Sharun, K., Tiwari, R., Natesan, S., & Dhama, K. (2021). SARS-CoV-2 infection in farmed minks, associated zoonotic concerns, and importance of the One Health approach during the ongoing COVID-19 pandemic. Veterinary Quarterly, 41(1), 50–60. https://doi.org/10.1080/01652176.2020.1867776
Shen, M., Liu, C., Xu, R., Ruan, Z., Zhao, S., Zhang, H., Wang, W., Huang, X., Yang, L., Tang, Y., Yang, T., & Jia, X. (2020). Predicting the Animal Susceptibility and Therapeutic Drugs to SARS-CoV-2 Based on Spike Glycoprotein Combined With ACE2. Frontiers in Genetics, 11, 575012. https://doi.org/10.3389/fgene.2020.575012
Shi, J., Wen, Z., Zhong, G., Yang, H., Wang, C., Huang, B., Liu, R., He, X., Shuai, L., Sun, Z., Zhao, Y., Liu, P., Liang, L., Cui, P., Wang, J., Zhang, X., Guan, Y., Tan, W., Wu, G., … Bu, Z. (2020). Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS–coronavirus 2. Science, 368(6494), 1016–1020. https://doi.org/10.1126/science.abb7015
Shou, S., Liu, M., Yang, Y., Kang, N., Song, Y., Tan, D., Liu, N., Wang, F., Liu, J., & Xie, Y. (2021). Animal Models for COVID-19: Hamsters, Mouse, Ferret, Mink, Tree Shrew, and Non-human Primates. Frontiers in Microbiology, 12, 626553. https://doi.org/10.3389/fmicb.2021.626553
Shrestha, L. B., Foster, C., Rawlinson, W., Tedla, N., & Bull, R. A. (2022). Evolution of the SARS‐CoV‐2 omicron variants BA.1 to BA.5: Implications for immune escape and transmission. Reviews in Medical Virology. https://doi.org/10.1002/rmv.2381
Shuai, H., Chan, J. F.-W., Yuen, T. T.-T., Yoon, C., Hu, J.-C., Wen, L., Hu, B., Yang, D., Wang, Y., Hou, Y., Huang, X., Chai, Y., Chan, C. C.-S., Poon, V. K.-M., Lu, L., Zhang, R.-Q., Chan, W.-M., Ip, J. D., Chu, A. W.-H., … Chu, H. (2021). Emerging SARS-CoV-2 variants expand species tropism to murines. EBioMedicine, 73, 103643. https://doi.org/10.1016/j.ebiom.2021.103643
Sia, S. F., Yan, L.-M., Chin, A. W. H., Fung, K., Choy, K.-T., Wong, A. Y. L., Kaewpreedee, P., Perera, R. A. P. M., Poon, L. L. M., Nicholls, J. M., Peiris, M., & Yen, H.-L. (2020). Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature, 583(7818), 834–838. https://doi.org/10.1038/s41586-020-2342-5
Singh, A. P. (2018). Asiatic Lion Panthera leo persica Population Estimation in Asiatic Lion Landscape: Its Status, Dispersion and Management Challenges. Journal of the Bombay Natural History Society (JBNHS), 0(0). https://doi.org/10.17087/jbnhs/2018/v115/116570
Sironi, V. A., Inglese, S., & Lavazza, A. (2022). The “One Health” approach in the face of COVID-19: How radical should it be? Philosophy, Ethics, and Humanities in Medicine, 17(1), 3. https://doi.org/10.1186/s13010-022-00116-2
Sit, T. H. C., Brackman, C. J., Ip, S. M., Tam, K. W. S., Law, P. Y. T., To, E. M. W., Yu, V. Y. T., Sims, L. D., Tsang, D. N. C., Chu, D. K. W., Perera, R. A. P. M., Poon, L. L. M., & Peiris, M. (2020). Infection of dogs with SARS-CoV-2. Nature, 586(7831), 776–778. https://doi.org/10.1038/s41586-020-2334-5
Song, Z., Bao, L., Yu, P., Qi, F., Gong, S., Wang, J., Zhao, B., Liu, M., Han, Y., Deng, W., Liu, J., Wei, Q., Xue, J., Zhao, W., & Qin, C. (2021). SARS-CoV-2 Causes a Systemically Multiple Organs Damages and Dissemination in Hamsters. Frontiers in Microbiology, 11, 618891. https://doi.org/10.3389/fmicb.2020.618891
Spelman, L. H., Gilardi, K. V. K., Lukasik-Braum, M., Kinani, J.-F., Nyirakaragire, E., Lowenstine, L. J., & Cranfield, M. R. (2013). RESPIRATORY DISEASE IN MOUNTAIN GORILLAS ( GORILLA BERINGEI BERINGEI ) IN RWANDA, 1990–2010: OUTBREAKS, CLINICAL COURSE, AND MEDICAL MANAGEMENT. Journal of Zoo and Wildlife Medicine, 44(4), 1027–1035. https://doi.org/10.1638/2013-0014R.1
Statens Serum Institut. Mutations in the mink virus. 5 Nov 2020. https://www.ssi.dk/aktuelt/nyheder/2020/mutationer-i-minkvirus
Stolp, B., Stern, M., Ambiel, I., Hofmann, K., Morath, K., Gallucci, L., Cortese, M., Bartenschlager, R., Ruggieri, A., Graw, F., Rudelius, M., Keppler, O. T., & Fackler, O. T. (2022). SARS-CoV-2 variants of concern display enhanced intrinsic pathogenic properties and expanded organ tropism in mouse models. Cell Reports, 38(7), 110387. https://doi.org/10.1016/j.celrep.2022.110387
Su, S., Wong, G., Shi, W., Liu, J., Lai, A. C. K., Zhou, J., Liu, W., Bi, Y., & Gao, G. F. (2016). Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses. Trends in Microbiology, 24(6), 490–502. https://doi.org/10.1016/j.tim.2016.03.003
Sun, S.-H., Chen, Q., Gu, H.-J., Yang, G., Wang, Y.-X., Huang, X.-Y., Liu, S.-S., Zhang, N.-N., Li, X.-F., Xiong, R., Guo, Y., Deng, Y.-Q., Huang, W.-J., Liu, Q., Liu, Q.-M., Shen, Y.-L., Zhou, Y., Yang, X., Zhao, T.-Y., … Wang, Y.-C. (2020). A Mouse Model of SARS-CoV-2 Infection and Pathogenesis. Cell Host & Microbe, 28(1), 124-133.e4. https://doi.org/10.1016/j.chom.2020.05.020
Sun, Y., Lin, W., Dong, W., & Xu, J. (2022). Origin and evolutionary analysis of the SARS-CoV-2 Omicron variant. Journal of Biosafety and Biosecurity, 4(1), 33–37. https://doi.org/10.1016/j.jobb.2021.12.001
USDA APHIS | Cases of SARS-CoV-2 in Animals in the United States. (8 de Agosto de 2022). USDA FAQ’s and Resources about Coronavirus (COVID-19). https://www.aphis.usda.gov/aphis/dashboards/tableau/sars-dashboard
Vandegrift, K. J., Yon, M., Surendran-Nair, M., Gontu, A., Amirthalingam, S., Nissly, R. H., Levine, N., Stuber, T., DeNicola, A. J., Boulanger, J. R., Kotschwar, N., Aucoin, S. G., Simon, R., Toal, K., Olsen, R. J., Davis, J. J., Bold, D., Gaudreault, N. N., Richt, J. A., … Kuchipudi, S. V. (2022). Detection of SARS-CoV-2 Omicron variant (B.1.1.529) infection of white-tailed deer [Preprint]. Microbiology. https://doi.org/10.1101/2022.02.04.479189
Vijaykrishna, D., Smith, G. J. D., Zhang, J. X., Peiris, J. S. M., Chen, H., & Guan, Y. (2007). Evolutionary Insights into the Ecology of Coronaviruses. Journal of Virology, 81(8), 4012–4020. https://doi.org/10.1128/JVI.02605-06
Wang, L. (Org.). (2022). Animal Coronaviruses. Springer US. https://doi.org/10.1007/978-1-0716-2091-5
Wang, L., Gyimesi, Z. S., Killian, M. L., Torchetti, M., Olmstead, C., Fredrickson, R., & Terio, K. A. (2022). Detection of SARS‐CoV‐2 clade B.1.2 in three snow leopards. Transboundary and Emerging Diseases, tbed.14625. https://doi.org/10.1111/tbed.14625
Wang, L., Mitchell, P. K., Calle, P. P., Bartlett, S. L., McAloose, D., Killian, M. L., Yuan, F., Fang, Y., Goodman, L. B., Fredrickson, R., Elvinger, F., Terio, K., Franzen, K., Stuber, T., Diel, D. G., & Torchetti, M. K. (2020). Complete Genome Sequence of SARS-CoV-2 in a Tiger from a U.S. Zoological Collection. Microbiology Resource Announcements, 9(22), e00468-20. https://doi.org/10.1128/MRA.00468-20
Wei, C., Shan, K.-J., Wang, W., Zhang, S., Huan, Q., & Qian, W. (2021). Evidence for a mouse origin of the SARS-CoV-2 Omicron variant. Journal of Genetics and Genomics, 48(12), 1111–1121. https://doi.org/10.1016/j.jgg.2021.12.003
Westhaus, S., Weber, F.-A., Schiwy, S., Linnemann, V., Brinkmann, M., Widera, M., Greve, C., Janke, A., Hollert, H., Wintgens, T., & Ciesek, S. (2021). Detection of SARS-CoV-2 in raw and treated wastewater in Germany – Suitability for COVID-19 surveillance and potential transmission risks. Science of The Total Environment, 751, 141750. https://doi.org/10.1016/j.scitotenv.2020.141750
Woo, P. C. Y., Lau, S. K. P., Lam, C. S. F., Lau, C. C. Y., Tsang, A. K. L., Lau, J. H. N., Bai, R., Teng, J. L. L., Tsang, C. C. C., Wang, M., Zheng, B.-J., Chan, K.-H., & Yuen, K.-Y. (2012). Discovery of Seven Novel Mammalian and Avian Coronaviruses in the Genus Deltacoronavirus Supports Bat Coronaviruses as the Gene Source of Alphacoronavirus and Betacoronavirus and Avian Coronaviruses as the Gene Source of Gammacoronavirus and Deltacoronavirus. Journal of Virology, 86(7), 3995–4008. https://doi.org/10.1128/JVI.06540-11
World Health Organization. (2022, July 26). WHO Coronavirus (COVID-19) Dashboard. WHO. Retrieved July 26, 2022, from https://covid19.who.int
Wu, L., Chen, Q., Liu, K., Wang, J., Han, P., Zhang, Y., Hu, Y., Meng, Y., Pan, X., Qiao, C., Tian, S., Du, P., Song, H., Shi, W., Qi, J., Wang, H.-W., Yan, J., Gao, G. F., & Wang, Q. (2020). Broad host range of SARS-CoV-2 and the molecular basis for SARS-CoV-2 binding to cat ACE2. Cell Discovery, 6(1), 68. https://doi.org/10.1038/s41421-020-00210-9
Xavier, A. R., Silva, J. S., Almeida, J. P. C. L., Conceição, J. F. F., Lacerda, G. S., & Kanaan, S. (2020). COVID-19: Clinical and laboratory manifestations in novel coronavirus infection. Jornal Brasileiro de Patologia e Medicina Laboratorial. https://doi.org/10.5935/1676-2444.20200049
Xiang, B., Yang, L., Ye, Z., Ren, T., & Ye, Y. (2022). Vaccination of susceptible animals against SARS-CoV-2. Journal of Infection, 84(5), e48–e49. https://doi.org/10.1016/j.jinf.2022.03.005
Yan, H., Jiao, H., Liu, Q., Zhang, Z., Xiong, Q., Wang, B.-J., Wang, X., Guo, M., Wang, L.-F., Lan, K., Chen, Y., & Zhao, H. (2021). ACE2 receptor usage reveals variation in susceptibility to SARS-CoV and SARS-CoV-2 infection among bat species. Nature Ecology & Evolution, 5(5), 600–608. https://doi.org/10.1038/s41559-021-01407-1
Yen, H.-L., Sit, T. H. C., Brackman, C. J., Chuk, S. S. Y., Gu, H., Tam, K. W. S., Law, P. Y. T., Leung, G. M., Peiris, M., Poon, L. L. M., Cheng, S. M. S., Chang, L. D. J., Krishnan, P., Ng, D. Y. M., Liu, G. Y. Z., Hui, M. M. Y., Ho, S. Y., Su, W., Sia, S. F., … Yung, L. (2022). Transmission of SARS-CoV-2 delta variant (AY.127) from pet hamsters to humans, leading to onward human-to-human transmission: A case study. The Lancet, 399(10329), 1070–1078. https://doi.org/10.1016/S0140-6736(22)00326-9
Zambrano-Mila, M. S., Freire-Paspuel, B., Orlando, S. A., & Garcia-Bereguiain, M. A. (2022). SARS-CoV-2 infection in free roaming dogs from the Amazonian jungle. One Health, 14, 100387. https://doi.org/10.1016/j.onehlt.2022.100387
Zaneti, R. N., Girardi, V., Spilki, F. R., Mena, K., Westphalen, A. P. C., da Costa Colares, E. R., Pozzebon, A. G., & Etchepare, R. G. (2021). Quantitative microbial risk assessment of SARS-CoV-2 for workers in wastewater treatment plants. Science of The Total Environment, 754, 142163. https://doi.org/10.1016/j.scitotenv.2020.142163
Zhang, Z., Zhang, Y., Liu, K., Li, Y., Lu, Q., Wang, Q., Zhang, Y., Wang, L., Liao, H., Zheng, A., Ma, S., Fan, Z., Li, H., Huang, W., Bi, Y., Zhao, X., Wang, Q., Gao, G. F., Xiao, H., … Sun, Y. (2021). The molecular basis for SARS-CoV-2 binding to dog ACE2. Nature Communications, 12(1), 4195. https://doi.org/10.1038/s41467-021-24326-y
Zheng, H., Li, H., Guo, L., Liang, Y., Li, J., Wang, X., Hu, Y., Wang, L., Liao, Y., Yang, F., Li, Y., Fan, S., Li, D., Cui, P., Wang, Q., Shi, H., Chen, Y., Yang, Z., Yang, J., … Liu, L. (2020). Virulence and pathogenesis of SARS-CoV-2 infection in rhesus macaques: A nonhuman primate model of COVID-19 progression. PLOS Pathogens, 16(11), e1008949. https://doi.org/10.1371/journal.ppat.1008949
Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., Si, H.-R., Zhu, Y., Li, B., Huang, C.-L., Chen, H.-D., Chen, J., Luo, Y., Guo, H., Jiang, R.-D., Liu, M.-Q., Chen, Y., Shen, X.-R., Wang, X., … Shi, Z.-L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273. https://doi.org/10.1038/s41586-020-2012-7
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Antonio Neres Norberg; Paulo Roberto Blanco Moreira Norberg; Bianca Magnelli Mangiavacchi; Renato Mataveli Ferreira Filho; Lígia Cordeiro Matos Faial; Claudia Caixeta Franco Andrade Colete; Lívia Mattos Martins; Nadir Francisca de Sant’Anna; Clara dos Reis Nunes; Thaís Rigueti Brasil Borges
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.