Optimización del proceso foto-fentom para la remediación de residuos de diclofenaco sódico en muestras de agua
DOI:
https://doi.org/10.33448/rsd-v11i12.34184Palabras clave:
Proceso oxidativo avanzado; Diclofenaco sódico; Contaminación ambiental; Espectrofotometría; Agua.Resumen
En todo el mundo hay una creciente incidencia de contaminantes en las matrices acuosas, incluidos los antibióticos, los pesticidas y los productos farmacéuticos. Este problema, junto con la presencia de estos contaminantes a niveles de trazas, crea desafíos únicos para la detección analítica y la evaluación del rendimiento de la eliminación de estos contaminantes del agua. El objetivo de este experimento fue optimizar las condiciones experimentales de un proceso oxidativo avanzado para residuos de diclofenaco sódico en solución acuosa. El fármaco se determinó por espectrofotometría UV-Vis utilizando una planificación experimental de punto central para evaluar la degradación del diclofenaco sódico. La planificación estaba compuesta por dos niveles y tres factores: (X1) Tiempo de irradiación, que va de 2 a 4 h; (X2) Contenido de peróxido de hidrógeno, que va de 1 a 7%; y (X3) Concentración de Fe2+, que va de 25 a 100 mg L-1. De acuerdo con los niveles definidos para cada parámetro, la metodología optimizada de degradación del fármaco se obtuvo mediante la combinación de 2 h de irradiación, solución de peróxido de hidrógeno al 1% y 25 mg L-1 de solución que contenía Fe2+, donde se logró el 97,04% de la degradación del diclofenaco sódico. A partir del ANOVA se pudo inferir que la concentración de Fe2+ (p = 0,13044) y, la interacción tiempo de irradiación con la concentración de Fe2+ (X1X3) (p = 0,0439) fueron los factores más significativos en el proceso de degradación. La planificación experimental sirvió para indicar la región de máxima degradación, por lo que la metodología fue adecuada para la degradación de residuos de este fármaco en muestras de agua.
Citas
Acuña, V., Ginebreda, A., Mor, J. R., Petrovic, M., Sabater, S., Sumpter, J., Barceló, D. (2015). Balancing the health benefits and environmental risks of pharmaceuticals: diclofenac as an example. Environment International, 85, 327–333. https://doi.org/10.1016/j.envint.2015.09.023
Ammar, H. B.; Brahim, M. Ben; Abdelhédi, R.; Samet, Y. (2016). Enhanced degradation of metronidazole by sunlight via photo-Fenton process under gradual addition of hydrogen peroxide. Journal of Molecular Catalysis A: Chemical, 420, 222–227. http://dx.doi.org/10.1016/j.molcata.2016.04.029
Aydin, H.; Melike, K.; Semra, K.; Alireza, K.; Ozkan A.; Bilal Y. (2018). Preparation of magnetite nanoparticles by high-energy planetary ball mill and its application for ciprofloxacin degradation through heterogeneous Fenton process. Journal of Environmental Management, 211, 53–62. https://doi.org/10.1016/j.jenvman.2018.01.014
Alygizakis, N. A.; Gago-Ferrero, P.; Borova, V. L.; Pavlidou, A.; Hatzianestis, I.; Thomaidis, N. S. (2016). Occurrence and spatial distribution of 158 pharmaceuticals, drugs of abuse and related metabolites in offshore seawater. Science of the Total Environment, 541, 1097–1105. https://doi.org/10.1016/j.scitotenv.2015.09.145
Ameta, R. Chohadia A. K. Jain, A. Punjabi, P. B. (2018). Fenton and Photo-Fenton Processes. Advanced Oxidation Processes for Waste Water Treatment. Emerging Green Chemical Technology, 3, 49-87. https://doi.org/10.1016/B978-0-12-810499-6.00003-6
Araújo, K. S.; Antonelli, R.; Gaydeczka, B.; Granato, A. C.; Malpass, G. R. P. Processos oxidativos avançados: uma revisão de fundamentos e aplicações no tratamento de águas residuais urbanas e efluentes industriais. Ambiente & Água. 11 (2), 387-401.
Baloyi, J.; Ntho, T. & Moma, J. (2018). A Novel Synthesis Method of Al/Cr Pillared Clay and its Application in the Catalytic Wet Air Oxidation of Phenol. Catalysis Letters, 148 (12), 3655–3668. https://doi.org/10.1007/s10562-018-2579-x
Bel Hadjltaief, H.; Costa, P. da; Beaunier, P.; Gálvez, M. E.; Zina, Ben, M. (2014). Fe-clay-plate as a heterogeneous catalyst in photo-Fenton oxidation of phenol as probe molecule for water treatment. Applied Clay Science, 91-92, 46–54. https://doi.org/10.1016/j.clay.2014.01.020
Carra, I.; Sánchez Pérez, J. A.; Malato, S.; Autin, O.; Jefferson, B.; Jarvis, P. (2015). Application of high intensity UVC-LED for the removal of acetamiprid with the photo-Fenton process. Chemical Engineering Journal, 264, 690–696. https://doi.org/10.1016/J.CEJ.2014.11.142
Chan, J. Y. T.; Ang, S. Y.; Ye, E. Y.; Sullivan, M.; Zhang, J., & Lin, M. (2015). Heterogeneous photo-Fenton reaction on hematite (α-Fe2O3){104}, {113} and {001} surface facets. Physical Chemistry Chemical Physics, 17, 38. https://doi.org/10.1039/C5CP03332B
Cihanoglu, A.; Gunduz, G.; Dukkanci, M. (2015). Degradation of acetic acid by heterogeneous Fenton-like oxidation over iron-containing ZSM-5 zeolites. Applied Catalysis B: Environmental, 165, 687–699. https://doi.org/10.1016/j.apcatb.2014.10.073
Davididou, K.; Monteagudo, J. M.; Chatzisymeon, E.; Dur An, A.; Exposito, A. J. (2017). Degradation and mineralization of antipyrine by UV-A LED photo-Fenton reaction intensified by ferrioxalate with addition of persulfate. Separation and Purification Technology, 172, 227–235. https://doi.org/10.1016/j.seppur.2016.08.021
Faust, B. C.; Hoigné, J. (1990) Photolysis of Fe (III)-hidroxy complexes as sources of OH radicals in clouds, fog and rain. Atmospheric Environment, 24 (1), 79-89. https://doi.org/10.1016/0960-1686(90)90443-Q
Hahladakis, J. N et al (2018). An overview of chemical additivies present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. Journal of Hazard Materials, 344, 179- 199. https://doi.org/10.1016/j.jhazmat.2017.10.014
Hu, J.; Zhai, C.; Zhu, M. (2021). Photo-responsive metal/semiconductor hybrid nanostructure: A promising electrocatalyst for solar light enhanced fuel cell reaction. Chinese Chemical Letters, 32, 1348-1358. https://doi.org/10.1016/j.cclet.2020.09.049
Karabegović, I.T., S.S. Stojicević, D.T. Velicković, N.C. Nikolić and M.L. Lazic. (2013). Optimization of microwave-assisted extraction and characterization of phenolic compounds in cherry laurel (Prunus laurocerasus) leaves. Separation and Purification Technology, 120, 429-436. http://dx.doi.org/10.1016/j.seppur.2013.10.021
Li, X.; Huang, S.; Xu, H.; Deng, Y.; Wang, Z.; Liu, Z-H. (2021). Molybdenum phosphide (MoP) with dual active sites for the degradation of diclofenac in Fenton-like system. Chinese Chemical Letters, 1-5. https://doi.org/10.1016/j.cclet.2021.07.058
Lima, S. L.; Rodrigues, M. J. R.; Silva, T. R.; Novais, C.; Naves, P. (2015). Uso indiscriminado de diclofenaco de potássio pela população idosa na cidade de Anápolis, no estado de Goiás, Brasil em 2014. Revista Colombiana de Ciencias Químico-Farmacéuticas, 44(2), 179-188.
Lonappan, L.; Brar, S. K.; Das, R. K.; Verma, M.; Surampalli, R. Y. (2016). Diclofenac and its transformation products: Environmental occurrence and toxicity - A review, 96, 127-138. https://doi.org/10.1016/j.envint.2016.09.014
Martins, L. M.; Silva, C. E.; Moita Neto, J. M.; Lima, A. S.; Moreira, R. F. P. M. (2011) Application of Fenton, photo-Fenton and UV/H2O2 in treating synthetic textile wastewater containing the dye Black Biozol UC. Engenharia Sanitária e Ambiental, 16, 261-270.
Santos, L. G., S. S.; Bergold, A. M. (2007). Caracterização e qualificação de diclofenaco de sódio como padrão secundário. Latin American Journal of Pharmacy, 26, 355-361.
Silva, D. F.; Azevedo, E. B.; Rezende, M. O. O. (2016). Optimization of Microwave-Assisted Extraction of a Bioherbicide from Canavalia ensiformis Leaves. American Journal of Environmental Sciences, 12 (1), 27-32. https://doi.org/10.3844/ajessp.2016.27.32
Silva, D. F.; Landgraf, M. D.; Rezende, M. O. O. (2017). Assessment of Triazine Herbicides in Soil by Microwave-assisted Extraction Followed by Gas Chromatography Coupled to Mass Spectrometry Detection. Journal of Chemistry and Chemical Engineering, 11, 1-8. https://doi.org/10.17265/1934-7375/2017.01.001
Silva, D. F.; Landgraf, M. D.; Rezende, M. O. O. (2017). Assessment of Triazine Herbicides in Soil by Microwave-assisted Extraction Followed by Gas Chromatography Coupled to Mass Spectrometry Detection. Journal of Chemistry and Chemical Engineering, 11, 1-8. https://doi.org/10.17265/1934-7375/2017.01.001
Song, J.; Li, D.; Liu, C.; Zhang, Y. (2011). Optimized microwave-assisted extraction of total phenolics (TP) from Ipomoea batatas leaves and its antioxidant activity. Innovative Food Science and Emerging Technologies, 12, 282-287. https://doi.org/10.1016/j.ifset.2011.03.001
Sun, M.; Liu, H.; Qu, J.; Li, J. (2016). Earth-Rich Transition Metal Phosphide for Energy Conversion and Storage. Advanced Energy Materials, 6, 1600087. https://doi.org/10.1002/aenm.201600087
Thanhmingliana, D. T. (2015). Efficient use of hybrid materials in the remediation of aquatic environment contaminated with micro-pollutant diclofenac sodium. Chemical Engineering Journal. 263, 364-373. https://doi.org/10.1016/j.cej.2014.10.102
Tong, W.; Xie, Y.; Luo, H.; Niu, J.; Ran, W.; Hu, W.; Wang, L.; Yao, C.; Liu, W.; Zhang, Y.; Wang, Y. (2019). Phosphorus-rich microorganism-enabled synthesis of cobalt phosphide/carbon composite for bisphenol A degradation through activation of peroxymonosulfate. Chemical Engineering Journal. 378. 122187. https://doi.org/10.1016/j.cej.2019.122187
Vieira, F. S.; Santos, M. A. B. O setor farmacêutico no Brasil sob as Lentes da Conta- Satélite de Saúde, Texto para discussão, Instituto de Pesquisa Econômica e Aplicada, Brasília, 2020.
Zhao, W.; Yu, Z.; Liu, J.; Yu, Y.; Yin, Y.; Lin, S.; Chen, F. (2011). Optimized extraction of polysaccharides from corn silk by pulsed electric field and response surface quadratic design. Journal of the Science of Food and Agriculture, 91, 2201-2209. https://doi.org/10.1002/jsfa.4440
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Nylvana Moreira Costa; Larissa Rocha de Oliveira; Breno Ricardo Barroso Lima; Eduardo Henrique Costa Rodrigues; Alexsandro Ferreira dos Santos; Anna Regina Lanner de Moura; Wolia Costa Gomes; Rita de Cássia Mendonça de Miranda; Maria Raimunda Chagas Silva; Darlan Ferreira da Silva
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.