Un método basado en pix2pix para atenuar el sesgo en el análisis de ensayos de cicatrización de heridas
DOI:
https://doi.org/10.33448/rsd-v11i12.34271Palabras clave:
Aprendizaje automático; Migración celular; Análisis automatizado; CGAN.Resumen
Los avances de las nuevas tecnologías en el área de aprendizaje automático han llevado al desarrollo de redes adversarias generativas condicionales con uso directo de imágenes, como es el caso del modelo pix2pix. Una aplicación potencial para el modelo pix2pix discutido en este trabajo es el análisis de imágenes de curación de heridas o ensayos de rascado que se usan ampliamente para evaluar la migración celular in vitro. La forma más común de evaluar los resultados del ensayo de curación de heridas es detectando manualmente el área de la herida en la imagen, separando el área vacía y el área ocupada por células, durante 24, 48 o incluso 72 h. Aunque este procedimiento se ha presentado durante mucho tiempo en la literatura, se ha indicado que carece de objetividad, requiere mucho tiempo y conduce a una mala interpretación de los datos. En un intento por superar la falta de robustez y consistencia mostrada por la evaluación manual, este trabajo tiene como objetivo implementar un método basado en pix2pix para reducir el sesgo en el análisis de cicatrización de heridas, al tiempo que introduce un nuevo punto de vista del análisis de imágenes. El sesgo introducido manualmente en el algoritmo de procesamiento de imágenes presentó desviaciones de hasta un 15 % al variar ligeramente una sola variable, mientras que el procesamiento de imágenes realizado por el modelo resultó en desviaciones en su mayoría dentro del 6 % en comparación con el análisis manual.
Citas
Abdelmotaal, H., Abdou, A. A., Omar, A. F., El-Sebaity, D. M., & Abdelazeem, K. (2021). Pix2pix conditional generative adversarial networks for scheimpflug camera color-coded corneal tomography image generation. Translational Vision Science & Technology. 10(7), 21. https://doi.org/10.1167/tvst.10.7.21
Auerbach, R., Auerbach, W., & Polakowski, I. (1991). Assays for angiogenesis: A review. Pharmacology & Therapeutics. 51(1), 1-11. https://doi.org/10.1016/0163-7258(91)90038-n
Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI. 8(6), 679-698. https://doi.org/10.1109/tpami.1986.4767851
Choudhury, G. R., Ryou, M.-G., Poteet, E., Wen, Y., He, R., Sun, F., Yuan, F., Jin, K., & Yang, S.-H. (2014). Involvement of p38 MAPK in reactive astrogliosis induced by ischemic stroke. Brain Research. 1551, 45-58. https://doi.org/10.1016/j.brainres.2014.01.013
Favretto, G., da Cunha, R. S., Santos, A. F., Leitolis, A., Schiefer, E. M., Gregorio, P. C., Franco, C. R. C., Massy, Z., Dalboni, M. A., & Stinghen, A. E. M. (2021). Uremic endothelial-derived extracellular vesicles: Mechanisms of formation and their role in cell adhesion, cell migration, inflammation, and oxidative stress. Toxicology Letters. 347, 12-22. https://doi.org/10.1016/j.toxlet.2021.04.019
Geback, T., Schulz, M. M. P., Koumoutsakos, P., & Detmar, M. (2009). TScratch: a novel and simple software tool for automated analysis of monolayer wound healing assays. BioTechniques. 46(4), 265-274. https://doi.org/10.2144/000113083
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2020). Generative adversarial networks. Communications of the ACM. 63(11), 139-144. https://doi.org/10.1145/3422622
Guo, S., & DiPietro, L. A. (2010). Factors a ecting wound healing. Journal of Dental Research. 89(3), 219-229. https://doi.org/10.1177/0022034509359125
Ieso, M. L. D., & Pei, J. V. (2018). An accurate and cost-effective alternative method for measuring cell migration with the circular wound closure assay. Bioscience Reports. 38(5). https://doi.org/10.1042/bsr20180698
Isola, P., Zhu, J.-Y., Zhou, T., & Efros, A.A. (2017). Image-to-image translation with conditional adversarial networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/cvpr.2017.632. https://doi.org/10.1109/cvpr.2017.632
Jonkman, J. E. N., Cathcart, J. A., Xu, F., Bartolini, M. E., Amon, J. E., Stevens, K. M., & Colarusso, P. (2014). An introduction to the wound healing assay using live-cell microscopy. Cell Adhesion & Migration. 8(5), 440-451. https://doi.org/10.4161/cam.36224
Justus, C. R., Leffler, N., Ruiz-Echevarria, M., & Yang, L. V. (2014). In vitro cell migration and invasion assays. Journal of Visualized Experiments. (88). https://doi.org/10.3791/51046
Mirza, M., & Osindero, S. (2014). Conditional Generative Adversarial Nets. arXiv. https://doi.org/10.48550/ARXIV.1411.1784.
Monsuur, H. N., Boink, M. A., Weijers, E. M., Roel, S., Breetveld, M., Gefen, A., van den Broek, L. J., & Gibbs, S. (2016). Methods to study differences in cell mobility during skin wound healing in vitro. Journal of Biomechanics. 49(8), 1381-1387. https://doi.org/10.1016/j.jbiomech.2016.01.040
Mouritzen, M. V. ,& Jenssen, H. (2018). Optimized scratch assay for in vitro testing of cell migration with an automated optical camera. Journal of Visualized Experiments. (138). https://doi.org/10.3791/57691
Nunes, J. P. S., & Dias, A. A. M. (2017). ImageJ macros for the user-friendly analysis of soft-agar and wound-healing assays. BioTechniques. 62(4), 175-179. https://doi.org/10.2144/000114535
Rodrigues, M., Kosaric, N., Bonham, C. A., & Gurtner, G. C. (2019). Wound healing: A cellular perspective. Physiological Reviews. 99(1), 665-706. https://doi.org/10.1152/physrev.00067.2017
Tonnesen, M. G., Feng, X., & Clark, R. A. F. (2000). Angiogenesis in wound healing. Journal of Investigative Dermatology Symposium Proceedings. 5(1), 40-46. https://doi.org/10.1046/j.1087-0024.2000.00014.x
Velnar, T., & Gradisnik, L. (2018). Tissue augmentation in wound healing: the role of endothelial and epithelial cells. Medical Archives. 72(6), 444. https://doi.org/10.5455/medarh.2018.72.444-448
Zordan, M. D., Mill, C. P., Riese, D. J., & Leary, J. F. (2011). A high throughput, interactive imaging, bright-field wound healing assay. Cytometry Part A. 79A(3), 227-232. https://doi.org/10.1002/cyto.a.21029
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Elberth Manfron Schiefer; Andressa Flores Santos; Regiane Stafim da Cunha; Marcia Muller; Andréa Emilia Marques Stinghen; José Luis Fabris; Lucas Hermann Negri
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.