Bacillus cereus UFPEDA 1040B como potencial promotor del crecimiento vegetal: un estudio in vitro

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i12.34517

Palabras clave:

Rizobacteria; Auxina; Ácidos orgánicos; Antagonismo.

Resumen

La región semiárida nororiental está compuesta por numerosos microorganismos adaptados a condiciones extremas y, para asegurar su supervivencia, pueden producir varias biomoléculas y desarrollar mecanismos peculiares. El uso de microorganismos ha sido reportado como una alternativa promisoria para promover el crecimiento de las plantas através de la producción de varias moléculas bioactivas, que pueden reemplazar a los agentes químicos que causan problemas ambientales. En este estudio, Bacillus sp. Ar 16 (UFPEDA), aislado de la rizósfera de Aroeira (Schinus terebinthifolia) en el bioma Caatinga, región semiárida nororiental, se caracterizó taxonómicamente mediante pruebas bioquímicas, espectrometría de masas de tiempo de vuelo de ionización por desorción láser asistida por matriz (MALDI-TOF) y la región 16S del rRNA como Bacillus cereus UFPEDA 1060 B (99,86%). En condiciones in vitro, la cepa de B. cereus UFPEDA 1060 B produjo exopolisacáridos (EPS), celulasas, fosfatasas y presentó una solubilización máxima de fosfato de 880 µg.mL-1. Además, se evidenció la producción de 3.96 a 4.06 µg.mL-1 de ácido indol acético (IAA) en medio de cultivo suplementado con 5 mM de L-triptófano. El IAA y otros ácidos orgánicos se extrajeron y analizaron mediante cromatografía líquida de alta resolución (HPLC) con un tiempo de retención de 6,2. La cepa estudiada tiene diferentes mecanismos que pueden promover el crecimiento de las plantas y también es capaz de controlar el crecimiento de Fusarium spp. y Colletotrichum spp. La efectividad de los resultados presentados por esta cepa demuestra su potencial biotecnológico, que puede traer beneficios a la agricultura sustentable con artificios que favorecen, además del crecimiento de las plantas, el ciclo de nutrientes.

 

Citas

Ali, B., Sabri, A. N., Ljung, K., & Hasnain, S. (2009). Quantification of indole-3-acetic acid from plant associated Bacillus spp. and their phytostimulatory effect on Vigna radiata (L.). World Journal of Microbiology and Biotechnology, 25(3), 519- 526. https://doi.org/10.1007/s11274-008-9918-9.

Aloo, B. N., Makumba, B. A., & Mbega, E. R. (2019). The potential of Bacilli rhizobacteria for sustainable crop production and environmental sustainability. Microbiological Research, 219, 26-39. https://doi.org/10.1016/j.micres.2018.10.011

Babalola, O. O. (2010). Beneficial bacteria of agricultural importance. Biotechnology letters, 32(11), 1559-1570. https://doi.org/10.1007/s10529-010-0347-0.

Banerjee, S., Palit, R., Sengupta, C., & Standing, D. (2010). Stress Induced Phosphate Solubilization by “Arthrobacter” Sp. and “Bacillus” Sp. Isolated from Tomato Rhizosphere. Australian Journal of Crop Science, 4(6), 378–383. Retrivied from https://search.informit.org/doi/10.3316/informit.414789554792811

Baron, S. (Ed.). (1996). Medical Microbiology. (4th ed.). University of Texas Medical Branch at Galveston.

Barton, L. J. (1948). Photometric method of phosphate rock analysis. Analytical chemistry, 20, 1068-1070.C.J. https://doi.org/10.1021/ac60023a024.

Batista, B. D. (2017). Promoção de crescimento vegetal por Bacillus sp. RZ2MS9: dos genes ao campo. Tese de Doutorado, Escola Superior de Agricultura Luiz de Quieroz, Universidade de São Paulo, Piracicaba. doi:10.11606/T.11.2017.tde-15082017-170543.

Campos, D. C., Acevedo, F., Morales, E., Aravena, J., Amiard, V., Jorquera, M. A., ... & Rubilar, M. (2014). Microencapsulation by spray drying of nitrogen-fixing bacteria associated with lupin nodules. World Journal of Microbiology and Biotechnology, 30(9), 2371-2378. https://doi.org/10.1007/s11274-014-1662-8.

Cappuccino, J., Sherman, N. (1992). Microbiology: a laboratory manual, tenth ed., Longman, New York.

Carrer Filho, R., Dianese, É. D., & Gomes daCunha, M. (2015). Suppression of Fusarium wilt in tomato plants by rhizobacteria from the Bacillus genus. Pesquisa Agropecuária Tropical, 45(3). http://dx.doi.org/10.1590/1983-40632015v4535397.

Chen, L., Shi, H., Heng, J., Wang, D., & Bian, K. (2019). Antimicrobial, plant growth-promoting and genomic properties of the peanut endophyte Bacillus velezensis LDO2. Microbiological research, 218, 41-48. https://doi.org/10.1016/j.micres.2018.10.002.

Da Silva, C. F., Vitorino, L. C., Soares, M. A., & Souchie, E. L. (2018). Multifunctional potential of endophytic and rhizospheric microbial isolates associated with Butia purpurascens roots for promoting plant growth. Antonie van Leeuwenhoek, 111(11), 2157-2174. https://doi.org/10.1007/s10482-018-1108-7.

De Moura, P. A., de Albuquerque Lima, T., Ferreira, M. R. A., Soares, L. A. L., de Souza Lima, G. M., Napoleão, T. H., ... & Paiva, P. M. G. (2021). The relevance of actinobacteria as sources of antioxidant compounds: Evaluation of Streptomyces isolates from rhizosphere collected at Brazilian Caatinga. In Microbial and Natural Macromolecules (pp. 401-418). Academic Press.https://doi.org/10.1016/B978-0-12-820084-1.00017-X.

Dey, R. K. K. P., Pal, K. K., Bhatt, D. M., & Chauhan, S. M. (2004). Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiological research, 159(4), 371-394. https://doi.org/10.1016/j.micres.2004.08.004.

Dionisio, J. A., Pimentel, I. C., Signor, D., De Paula, A. M., Maceda, A., & Matanna, A. L. (2016). Guia prático de biologia do solo.

Ek-Ramos, M. J., Gomez-Flores, R., Orozco-Flores, A. A., Rodríguez-Padilla, C., González-Ochoa, G., & Tamez-Guerra, P. (2019). Bioactive products from plant-endophytic Gram-positive bacteria. Frontiers in microbiology, 10, 463. https://doi.org/10.3389/fmicb.2019.00463.

Ferreira, C. M., Soares, H. M., & Soares, E. V. (2019). Promising bacterial genera for agricultural practices: An insight on plant growth-promoting properties and microbial safety aspects. Science of the total environment, 682, 779- 799.https://doi.org/10.1016/j.scitotenv.2019.04.225.

Frank, A. C., Saldierna Guzmán, J. P., & Shay, J. E. (2017). Transmission of bacterial endophytes. Microorganisms, 5(4), 70. https://doi.org/10.3390/microorganisms5040070.

Garrity, G. M., & Stanley, J. T. (2001). Bergey’s Manual® of Systematic Bacteriology: Volume One The Archaea and the Deeply Branching and Phototrophic Bacteria. D. R. Boone, & R. W. Castenholz (Eds.). Springer New York.

Geddie, J. L., & Sutherland, I. W. (1993). Uptake of metals by bacterial polysaccharides. Journal of Applied Bacteriology, 74(4), 467-472. https://doi.org/10.1111/j.1365-2672.1993.tb05155.x.

Ghyselinck, J., Velivelli, S. L., Heylen, K., O’Herlihy, E., Franco, J., Rojas, M., ... & Prestwich, B. D. (2013). Bioprospecting in potato fields in the Central Andean Highlands: screening of rhizobacteria for plant growth-promoting properties. Systematic and applied microbiology, 36(2), 116-127.. https://doi.org/10.1016/j.syapm.2012.11.007.

Hameeda, B., Reddy, Y., Rupela, O. P., Kumar, G. N., & Reddy, G. (2006). Effect of carbon substrates on rock phosphate solubilization by bacteria from composts and macrofauna. Current microbiology, 53(4), 298-302. https://doi.org/10.1007/s00284-006-0004-y.

Johnsen, H. R., & Krause, K. (2014). Cellulase activity screening using pure carboxymethylcellulose: application to soluble cellulolytic samples and to plant tissue prints. International Journal of Molecular Sciences, 15(1), 830-838. https://doi.org/10.3390/ijms15010830.

Kaur, H., Kaur, J., & Gera, R. (2016). Plant growth promoting rhizobacteria: a boon to agriculture. Int J Cell Sci Biotechnol, 5, 17-22. E-ISSN: 2320-7574. https://www.researchgate.net/profile/Harshpreet-Kaur/publication/357885974_Plant_Growth_Promoting_Rhizobacteria_-A-Boon-to-Agriculture/links/61e59b79c5e31033759f6204/Plant-Growth-Promoting-Rhizobacteria-A-Boon-to-Agriculture.pdf

Kasana, R. C., Salwan, R., Dhar, H., Dutt, S., & Gulati, A. (2008). A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Current microbiology, 57(5), 503-507. https://doi.org/10.1007/s00284-008- 9276-8.

Kavamura, V. N., Santos, S. N., da Silva, J. L., Parma, M. M., Ávila, L. A., Visconti, A., ... & de Melo, I. S. (2013). Screening of Brazilian cacti rhizobacteria for plant growth promotion under drought. Microbiological research, 168(4), 183- 191. https://doi.org/10.1016/j.micres.2012.12.002.

Koneman, E. W., & Allen, S. (2008). Koneman. Diagnostico Microbiologico/Microbiological diagnosis: Texto Y Atlas En Color/Text and Color Atlas. Ed. médica panamericana.

Lanna Filho, R., Ferro, H. M., & Pinho, R. D. (2010). Controle biológico mediado por Bacillus subtilis. Revista Trópica: Ciências Agrárias e Biológicas, 4(2), 12-20. http://dx.doi.org/10.0000/rtcab.v4i2.145

Lima-Neto, R., Santos, C., Lima, N., Sampaio, P., Pais, C., & Neves, R. P. (2014). Application of MALDI-TOF MS for requalification of a Candida clinical isolates culture collection. Brazilian Journal of Microbiology, 45, 515-522. https://doi.org/10.1590/S1517-83822014005000044.

Lins, M. R. D. C. R. (2014). Seleção de actinobactérias da rizosfera da caatinga com potencial para promoção de crescimento vegetal (Master's thesis, Universidade Federal de Pernambuco). https://attena.ufpe.br/handle/123456789/12154

Madigan, M. T., Martinko, J. M., Bender, K. S., Buckley, D. H., & Stahl, D. A. (2016). Microbiologia de Brock-14ª Edição. Artmed Editora.

Malavolta, E., Vitti, G. C., & Oliveira, S. A. D. (1997). Avaliação do estado nutricional das plantas: princípios e aplicações.

Marchioro, L. E. T. (2005). Produção de Ácido Indol Acético e derivados por bactérias fixadoras de nitrogênio. Curitiba: Universidade Federal do Paraná.

Marvasi, M., Visscher, P. T., & Casillas Martinez, L. (2010). Exopolymeric substances (EPS) from Bacillus subtilis: polymers and genes encoding their synthesis. FEMS microbiology letters, 313(1), 1-9. https://doi.org/10.1111/j.1574- 6968.2010.02085.x.

Moreira, A. L. D. L., & Araújo, F. F. D. (2013). Bioprospecção de isolados de Bacillus spp. como potenciais promotores de crescimento de Eucalyptus urograndis. Revista Árvore, 37, 933-943. http://dx.doi.org/10.1590/S0100-67622013000500016.

Mumtaz, M. Z., Ahmad, M., Jamil, M., & Hussain, T. (2017). Zinc solubilizing Bacillus spp. potential candidates for biofortification in maize. Microbiological Research, 202, 51-60.https://doi.org/10.1016/j.micres.2017.06.001.

Nadeem, S. M., Ahmad, M., Naveed, M., Imran, M., Zahir, Z. A., & Crowley, D. E. (2016). Relationship between in vitro characterization and comparative efficacy of plant growth-promoting rhizobacteria for improving cucumber salt tolerance. Archives of microbiology, 198(4), 379-387.https://doi.org/10.1007/s00203-016-1197-5.

Nahas, E. (2002). Microrganismos do solo produtores de fosfatases em diferentes sistemas agrícolas. Bragantia, 61, 267-275. https://doi.org/10.1590/S0006-87052002000300008.

Nain, L., Yadav, R. C., & Saxena, J. (2012). Characterization of multifaceted Bacillus sp. RM-2 for its use as plant growth promoting bioinoculant for crops grown in semi-arid deserts. Applied soil ecology, 59, 124- 135.https://doi.org/10.1016/j.apsoil.2011.08.001.

Nautiyal, C. S. (1999). An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS microbiology Letters, 170(1), 265-270.https://doi.org/10.1111/j.1574-6968.1999.tb13383.x.

Paulo, E. M., Vasconcelos, M. P., Oliveira, I. S., Affe, H. M. D. J., Nascimento, R., Melo, I. S. D., ... & Assis, S. A. D. (2012). An alternative method for screening lactic acid bacteria for the production of exopolysaccharides with rapid confirmation. Food Science and Technology, 32, 710-714. http://dx.doi.org/10.1590/S0101-20612012005000094.

Pérez-García, A., Romero, D., & De Vicente, A. (2011). Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Current opinion in biotechnology, 22(2), 187- 193.https://doi.org/10.1016/j.copbio.2010.12.003.

Prasad, R., Kumar, M., & Varma, A. (2015). Role of PGPR in soil fertility and plant health. In Plant-growth-promoting rhizobacteria (PGPR) and medicinal plants (pp. 247-260). Springer, Cham. doi:10.1007/978-3-319-13401-7_12

Reinhold-Hurek, B., & Hurek, T. (2011). Living inside plants: bacterial endophytes. Current opinion in plant biology, 14(4), 435-443. https://doi.org/10.1016/j.pbi.2011.04.004.

Ribeiro, C. M., & Cardoso, E. J. B. N. (2012). Isolation, selection and characterization of root-associated growth promoting bacteria in Brazil Pine (Araucaria angustifolia). Microbiological Research, 167(2), 69-78. https://doi.org/10.1016/j.micres.2011.03.003.

Radhakrishnan, R., Hashem, A., & Abd_Allah, E. F. (2017). Bacillus: A biological tool for crop improvement through bio-molecular changes in adverse environments. Frontiers in physiology, 8, 667. R. Radhakrishnan, A. Hashem, E.F. Abd_Allah,2017. https://doi.org/10.3389/fphys.2017.00667.

Rocha, F. Y. O., de Oliveira, C. M., da Silva, P. R. A., de Melo, L. H. V., do Carmo, M. G. F., & Baldani, J. I. (2017). Taxonomical and functional characterization of Bacillus strains isolated from tomato plants and their biocontrol activity against races 1, 2 and 3 of Fusarium oxysporum f. sp. Lycopersici. Applied soil ecology, 120, 8-19. https://doi.org/10.1016/j.apsoil.2017.07.025.

Romeiro, R. D. S. (2007). Controle biológico de doenças de plantas: procedimentos. Universidade Federal de Viçosa.

Romero, D., De Vicente, A., Rakotoaly, R. H., Dufour, S. E., Veening, J. W., Arrebola, E., ... & Pérez-García, A. (2007). The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Molecular Plant-Microbe Interactions, 20(4), 430-440. https://doi.org/10.1094/MPMI-20-4-0430.

Sambrook, J., & Russell, D. W. (2001). Molecular Cloning: A Laboratory Manual, thirded. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., & Gobi, T. A. (2013). Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2(1), 1-14. https://doi.org/10.1186/2193-1801-2-587.

Silambarasan, S., Logeswari, P., Cornejo, P., & Kannan, V. R. (2019). Evaluation of the production of exopolysaccharide by plant growth promoting yeast Rhodotorula sp. strain CAH2 under abiotic stress conditions. International journal of biological macromolecules, 121, 55-62.https://doi.org/10.1016/j.ijbiomac.2018.10.016.

Sindhu, S. S., & Dadarwal, K. R. (2001). Chitinolytic and cellulolytic Pseudomonas sp. antagonistic to fungal pathogens enhances nodulation by Mesorhizobium sp. Cicer in chickpea. Microbiological Research, 156(4), 353-358. https://doi.org/10.1078/0944-5013-00120.

Spaepen, S., Vanderleyden, J., & Remans, R. (2007). Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS microbiology reviews, 31(4), 425-448. https://doi.org/10.1111/j.1574-6976.2007.00072.x.

Teather, R. M., & Wood, P. J. (1982). Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Applied and environmental microbiology, 43(4), 777-780. https://doi.org/10.1128/aem.43.4.777-780.1982.

Trovão, D. M. D., Fernandes, P. D. Andrade, L. A. D., & Dantas Neto, J. (2007). Variações sazonais de aspectos fisiológicos de espécies da Caatinga. Revista Brasileira de Engenharia Agrícola e Ambiental, 11, 307-311. http://dx.doi.org/10.1590/S1415-43662007000300010.

Vafadar, F., Amooaghaie, R., & Otroshy, M. (2014). Effects of plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungus on plant growth, stevioside, NPK, and chlorophyll content of Stevia rebaudiana. Journal of Plant Interactions, 9(1), 128-136. https://doi.org/10.1080/17429145.2013.779035.

Vimal, J., Venu, A., & Joseph, J. (2016). Isolation and identification of cellulose degrading bacteria and optimization of the cellulase production. Int J Res Biosciences, 5(3), 58-67. https://www.researchgate.net/profile/Joseph-Vimal/publication/317300472_Isolation_and_identification_of_cellulose_degrading_bacteria_and_optimization_of_the_cellulase_production/links/5930e465a6fdcc89e784a471/Isolation-and-identification-of-cellulose-degrading-bacteria-and-optimization-of-the-cellulase-production.pdf

Yuan, J., Raza, W., Shen, Q., & Huang, Q. (2012). Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp. cubense. Applied and environmental microbiology, 78(16), 5942-5944. https://doi.org/10.1128/AEM.01357-12.

Zouari, I., Jlaiel, L., Tounsi, S., & Trigui, M. (2016). Biocontrol activity of the endophytic Bacillus amyloliquefaciens strain CEIZ-11 against Pythium aphanidermatum and purification of its bioactive compounds. Biological Control, 100, 54-62. https://doi.org/10.1016/j.biocontrol.2016.05.012.

Descargas

Publicado

20/09/2022

Cómo citar

LEMOS, A. C. A. .; SOUZA, A. S. e .; NASCIMENTO, P. H. do B.; LIMA-NETO, R. G. de; ARAÚJO, E. M. de; MARQUES, D. S. C. .; ANDRADE, E. R.; ARAÚJO, J. M. de; LIMA-GOMES, G. M. de S. . Bacillus cereus UFPEDA 1040B como potencial promotor del crecimiento vegetal: un estudio in vitro. Research, Society and Development, [S. l.], v. 11, n. 12, p. e449111234517, 2022. DOI: 10.33448/rsd-v11i12.34517. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/34517. Acesso em: 17 jul. 2024.

Número

Sección

Ciencias Agrarias y Biológicas