Observación del desarrollo embrionario y larvario del pez cebra a diferentes dosis de solución de curcumina: la disparidad entre seguro y tóxico

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i12.34580

Palabras clave:

Curcumina; Características teratogénicas; desarrollo fetal; Seguridad alimenticia.

Resumen

El objetivo del estudio es realizar un test de toxicidad rápido y eficaz que demuestre los niveles de seguridad o toxicidad en el desarrollo embrionario del pez cebra expuesto a diferentes dosis de curcumina. Las pruebas de embriotoxicidad se realizaron de acuerdo con la directriz de la OCDE. Se determinó una dosis estándar de 100 mg/kg de curcumina por peso de embrión de pez cebra. Se disolvió una solución madre en dimetilsulfóxido y luego se usó para realizar una dilución en serie en agua sin cloro para identificar niveles seguros de concentración de curcumina. La prueba se realizó a concentraciones de 0,6; 1,25; 2,50; 5; 6,25; 10; 12,5; 25; 50; 100 μM/mL, junto con un estándar de control que contiene solo agua no clorada. Luego del inicio de la exposición, los embriones fueron monitoreados con un microscopio óptico a las 8, 24, 48, 72 y 96 horas post-exposición para identificar posibles cambios y mortalidad. Observamos que dosis más altas de solución de curcumina influyen en la aparición de características teratogénicas como malformación ocular, retraso en el crecimiento, edema de yema, jarabe torcido y jarabe corto. También se analizaron los resultados a partir de la tasa de supervivencia embrionaria de las dosis utilizadas, concluyendo que a mayores concentraciones hubo una diferencia significativa en la supervivencia.

Citas

Ablain, J., & Zon, L. I. (2013). Of fish and men: using zebrafish to fight human diseases. Trends in Cell Biology, 23(12), 584–586. https://doi.org/10.1016/j.tcb.2013.09.009

Aggarwal, B. B., & Sung, B. (2009). Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. In Trends in Pharmacological Sciences (Vol. 30, Issue 2, pp. 85–94). https://doi.org/10.1016/j.tips.2008.11.002

Almeida, M. C., Sampaio, G. R., Bastos, D. H. M., & Villavicencio, A. L. C. H. (2018). Effect of gamma radiation processing on turmeric: Antioxidant activity and curcumin content. Radiation Physics and Chemistry, 152, 12–16. https://doi.org/10.1016/j.radphyschem.2018.07.008

Alvarez, E., & Láiz, L. (2013). Biosintesis De Penicilina. Clin Exp Pharmacol Physiol, 39(3), 283–299. https://doi.org/10.1111/j.1440-1681.2011.05648.x.Discovery

Cheng, A. L., Hsu, C.-H., Lin, J. K., Hsu, M., Ho, Y.-F., Shen, T. S., Ko, J. Y., Lin, J. T., Lin, B.-R., Ming-Shiang, W., Yu, H., Jee, S.-H., Chen, G., Chen, T., Chen, C., Lai, M.-K., Pu, Y. S., Pan, M., Yj, W., & Hsieh, C.-Y. (2000). Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Research, 21, 2895–2900.

Corson, T. W., & Crews, C. M. (2007). Molecular Understanding and Modern Application of Traditional Medicines: Triumphs and Trials. In Cell (130(5), 769–774). Elsevier B.V. https://doi.org/10.1016/j.cell.2007.08.021

Falcão, M. A. P., de Souza, L. S., Dolabella, S. S., Guimarães, A. G., & Walker, C. I. B. (2018). Zebrafish as an alternative method for determining the embryo toxicity of plant products: a systematic review. In Environmental Science and Pollution Research (Vol. 25, Issue 35, pp. 35015–35026). Springer Verlag. https://doi.org/10.1007/s11356-018-3399-7

Farrugia, G., & Balzan, R. (2012). Oxidative stress and programmed cell death in yeast. In Frontiers in Oncology: Vol. 2 JUN. https://doi.org/10.3389/fonc.2012.00064

Garcia, G. R., Noyes, P. D., & Tanguay, R. L. (2016). Advancements in zebrafish applications for 21st century toxicology. In Pharmacology and Therapeutics (Vol. 161, pp. 11–21). Elsevier Inc. https://doi.org/10.1016/j.pharmthera.2016.03.009

Guengerich, F. P., & MacDonald, J. S. (2007). Applying mechanisms of chemical toxicity to predict drug safety. In Chemical Research in Toxicology (20(3), 344–369). https://doi.org/10.1021/tx600260a

Howe, K., Clark, M. D., Torroja, C. F., Torrance, J., Berthelot, C., Muffato, M., Collins, J. E., Humphray, S., McLaren, K., Matthews, L., McLaren, S., Sealy, I., Caccamo, M., Churcher, C., Scott, C., Barrett, J. C., Koch, R., Rauch, G. J., White, S., & Stemple, D. L. (2013). The zebrafish reference genome sequence and its relationship to the human genome. Nature, 496(7446), 498–503. https://doi.org/10.1038/nature12111

Hudson, A., Lopez, E., Almalki, A. J., Roe, A. L., & Calderón, A. I. (2018). A Review of the Toxicity of Compounds Found in Herbal Dietary Supplements. In Planta Medica (Vol. 84, Issues 9–10, pp. 613–626). Georg Thieme Verlag. https://doi.org/10.1055/a-0605-3786

Ismail, H. F., Hashim, Z., Soon, W. T., Rahman, N. S. A., Zainudin, A. N., & Majid, F. A. A. (2017). Comparative study of herbal plants on the phenolic and flavonoid content, antioxidant activities and toxicity on cells and zebrafish embryo. Journal of Traditional and Complementary Medicine, 7(4), 452–465. https://doi.org/10.1016/j.jtcme.2016.12.006

Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., & Schilling, T. F. (1995). Stages of embryonic development of the zebrafish. Developmental Dynamics, 203(3), 253–310. https://doi.org/10.1002/aja.1002030302

Kishi, S., Slack, B. E., Uchiyama, J., & Zhdanova, I. V. (2009). Zebrafish as a genetic model in biological and behavioral gerontology: where development meets aging in vertebrates--a mini-review. Gerontology, 55(4), 430–441. https://doi.org/10.1159/000228892

Li, H., Sureda, A., Devkota, H. P., Pittalà, V., Barreca, D., Silva, A. S., Tewari, D., Xu, S., & Nabavi, S. M. (2020). Curcumin, the golden spice in treating cardiovascular diseases. In Biotechnology Advances (Vol. 38). Elsevier Inc. https://doi.org/10.1016/j.biotechadv.2019.01.010

Lieschke, G. J., & Currie, P. D. (2007). Animal models of human disease: Zebrafish swim into view. In Nature Reviews Genetics (8(5), 353–367). https://doi.org/10.1038/nrg2091

Liu, C. W., Xiong, F., Jia, H. Z., Wang, X. L., Cheng, H., Sun, Y. H., Zhang, X. Z., Zhuo, R. X., & Feng, J. (2013). Graphene-based anticancer nanosystem and its biosafety evaluation using a zebrafish model. Biomacromolecules, 14(2), 358–366. https://doi.org/10.1021/bm3015297

Lubbad, A., Oriowo, M. A., & Khan, I. (2009). Curcumin attenuates inflammation through inhibition of TLR-4 receptor in experimental colitis. Molecular and Cellular Biochemistry, 322(1–2), 127–135. https://doi.org/10.1007/s11010-008-9949-4

MacRae, C. A., & Peterson, R. T. (2015). Zebrafish as tools for drug discovery. In Nature Reviews Drug Discovery (14(10), 721–731). Nature Publishing Group. https://doi.org/10.1038/nrd4627

Mendonça, L. M., dos Santos, G. C., Antonucci, G. A., dos Santos, A. C., Bianchi, M. de L. P., & Antunes, L. M. G. (2009). Evaluation of the cytotoxicity and genotoxicity of curcumin in PC12 cells. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 675(1–2), 29–34. https://doi.org/10.1016/j.mrgentox.2009.02.003

Mohapatra, T. K. (2019). Exploration of anti-inflammatory and hepatoprotective effect of curcumin on co-administration with acetylsalicylic acid. Journal of Pharmacy & Pharmacognosy Research, 7(5).

Murayama, E., Kissa, K., Zapata, A., Mordelet, E., Briolat, V., Lin, H. F., Handin, R. I., & Herbomel, P. (2006). Tracing Hematopoietic Precursor Migration to Successive Hematopoietic Organs during Zebrafish Development. Immunity, 25(6), 963–975. https://doi.org/10.1016/j.immuni.2006.10.015

Ruhl, T., Jonas, A., Seidel, N. I., Prinz, N., Albayram, O., Bilkei-Gorzo, A., & von der Emde, G. (2016). Oxidation and Cognitive Impairment in the Aging Zebrafish. Gerontology, 62(1), 47–57. https://doi.org/10.1159/000433534

Savastano, D. (2008). The importance of testing equipment. Ink World, 14(6), 21–23.

Shin, J., Seol, I., & Son, C. (2010). Interpretation of Animal Dose and Human Equivalent Dose for Drug Development. The Journal of Korean Oriental Medicine, 31(3), 1–7.

Shishodia, S., Sethi, G., & Aggarwal, B. B. (2005). Curcumin: Getting back to the roots. Annals of the New York Academy of Sciences, 1056, 206–217. https://doi.org/10.1196/annals.1352.010

Stumpf, W. E. (2006). The dose makes the medicine. In Drug Discovery Today (Vol. 11, Issues 11–12, pp. 550–555). https://doi.org/10.1016/j.drudis.2006.04.012

Varela, M., Figueras, A., & Novoa, B. (2017). Modelling viral infections using zebrafish: Innate immune response and antiviral research. In Antiviral Research (Vol. 139, pp. 59–68). Elsevier B.V. https://doi.org/10.1016/j.antiviral.2016.12.013

Wells, P. G., Mccallum, G. P., Chen, C. S., Henderson, J. T., Lee, C. J. J., Perstin, J., Preston, T. J., Wiley, M. J., & Wong, A. W. (2009). Oxidative stress in developmental origins of disease: Teratogenesis, neurodevelopmental deficits, and cancer. In Toxicological Sciences (Vol. 108, Issue 1, pp. 4–18). https://doi.org/10.1093/toxsci/kfn263

Wu, J. Y., Lin, C. Y., Lin, T. W., Ken, C. F., & Wen, Y. Der. (2007). Curcumin affects development of zebrafish embryo. Biological and Pharmaceutical Bulletin, 30(7), 1336–1339. https://doi.org/10.1248/bpb.30.1336

Descargas

Publicado

21/09/2022

Cómo citar

ANDRADE, L. A. D. de .; CASETTA, J. .; BRACCINI, G. L. .; RIBEIRO, R. P. . Observación del desarrollo embrionario y larvario del pez cebra a diferentes dosis de solución de curcumina: la disparidad entre seguro y tóxico. Research, Society and Development, [S. l.], v. 11, n. 12, p. e486111234580, 2022. DOI: 10.33448/rsd-v11i12.34580. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/34580. Acesso em: 4 jul. 2024.

Número

Sección

Ciencias Agrarias y Biológicas