Innovación en el tratamiento de la estenosis aórtica mediante impresión 3D
DOI:
https://doi.org/10.33448/rsd-v11i14.35450Palabras clave:
Anatomía; Cardiología; Cirugía; Educación médica.Resumen
El uso de piezas 3D avanza en un sentido más amplio de la educación, hacia la interdisciplinariedad. Varias áreas ya utilizan esta tecnología para enseñar a la comunidad académica, incluso investigaciones más complejas como la impresión de órganos y aplicaciones de diseño en prótesis. La tecnología actual permite la impresión precisa de la anatomía cardíaca en materiales que se asemejan a las propiedades reales del corazón y los vasos, lo que permite la exploración de opciones, desafíos y posibilidades de la impresión 3D en el campo de la enfermedad cardíaca valvular, con el fin de proporcionar una idea del estado actual del arte y el desarrollo en esta área específicamente. Así, el presente estudio describe el potencial en el proceso de enseñanza-aprendizaje, en relación con la estenosis aórtica, utilizando metodologías Hands-on y modelos producidos en impresora 3D. Se realizó una revisión integrativa de la literatura utilizando los términos MeSH: “impresión 3d” y “estenosis aórtica”. El advenimiento de la tecnología de impresión 3D es capaz de crear modelos físicos anatómicamente precisos y específicos del paciente, convirtiendo imágenes 3D virtuales en la pantalla plana de la computadora en modelos 3D palpables adecuados para la simulación intervencionista, lo que permite una reducción del tiempo quirúrgico. El uso de modelos impresos en 3D puede facilitar el desarrollo de nuevos dispositivos y nuevas técnicas quirúrgicas. Sin embargo, las limitaciones de este modelo siguen chocando con el alto costo, la calidad de imagen del examen y el tiempo de impresión.
Citas
Araujo, M. C. E., Duarte, M. M. S., Louredo, L. M., Louredo, J. M., & Arruda, J. T. (2021). Contribuições da engenharia reversa e produção de modelos 3D para o ensino médico. Research, Society and Development, 10(11), e385101119692. https://doi.org/10.33448/rsd-v10i11.19692
Bompotis, G., Meletidou, M., Karakanas, A., Sotiriou, S., Sachpekidis, V., Konstantinidou, M., Spanopoulos, K., Styliadis, I., & Lazaridis, I. (2020). Transcatheter Aortic Valve Implantation using 3-D printing modeling assistance. A single-center experience. Hellenic journal of cardiology: HJC = Hellenike kardiologike epitheorese, 61(2), 131–132. https://doi.org/10.1016/j.hjc.2019.01.012
Corrigan, F. E., Gleason, P. T., Condado, J. F., Lisko, J. C., Chen, J. H., Kamioka, N., Keegan, P., Howell, S., Clements, S. D., Jr, Babaliaros, V. C., & Lerakis, S. (2019). Imaging for Predicting, Detecting, and Managing Complications After Transcatheter Aortic Valve Replacement. JACC. Cardiovascular imaging, 12(5), 904–920. https://doi.org/10.1016/j.jcmg.2018.07.036
Duarte, M. M. S., Araujo, M. C. E., Louredo, L. M., Louredo, J. M., & Arruda, J. T. (2021). Aplicabilidades da técnica de fotogrametria no ensino de Anatomia Humana. Research, Society and Development, 10(11), e51101119328. https://doi.org/10.33448/rsd-v10i11.19328
Fan, Y., Wong, R., & Lee, A. P. (2019). Three-dimensional printing in structural heart disease and intervention. Annals of translational medicine, 7(20), 579. https://doi.org/10.21037/atm.2019.09.73
Garcia, T. R., Macedo, R. M., Vaz, M. H. V., Borges, G. H. I., Zendron, I. M., & Arruda, J. T. (2022). Impressão 3D de peças anatômicas como ferramentas de educação e auxílio na prática clínica. Research, Society and Development, 11(13), e248111335234. https://doi.org/10.33448/rsd-v11i13.35234
Grimard, B. H., Safford, R. E., & Burns, E. L. (2016). Aortic Stenosis: Diagnosis and Treatment. American family physician, 93(5), 371–378.
Hussein, N., Honjo, O., Barron, D. J., & Yoo, S. J. (2021). Supravalvular aortic stenosis repair: surgical training of 2 repair techniques using 3D-printed models. Interactive cardiovascular and thoracic surgery, 33(6), 966–968. https://doi.org/10.1093/icvts/ivab198
Koche, J. C. (2011). Fundamentos de metodologia científica. Petrópolis: Vozes.
Lau, I., & Sun, Z. (2018). Three-dimensional printing in congenital heart disease: A systematic review. Journal of medical radiation sciences, 65(3), 226–236. https://doi.org/10.1002/jmrs.268
Levin, D., Mackensen, G. B., Reisman, M., McCabe, J. M., Dvir, D., & Ripley, B. (2020). 3D Printing Applications for Transcatheter Aortic Valve Replacement. Current cardiology reports, 22(4), 23. https://doi.org/10.1007/s11886-020-1276-8
Lindman, B. R., Dweck, M. R., Lancellotti, P., Généreux, P., Piérard, L. A., O'Gara, P. T., & Bonow, R. O. (2020). Management of Asymptomatic Severe Aortic Stenosis: Evolving Concepts in Timing of Valve Replacement. JACC. Cardiovascular imaging, 13(2 Pt 1), 481–493. https://doi.org/10.1016/j.jcmg.2019.01.036
Louredo, L. M., Duarte, M. M. S., Araújo, M. C. E., Louredo, J. M., & Arruda, J. T. (2021). Uso de prototipagem rápida ou manufatura aditiva para estudos de casos clínicos e planejamento de técnica cirúrgica utilizando modelos 3D. Research, Society and Development, 10(12), e336101220403. https://doi.org/10.33448/rsd-v10i12.20403
Memon, S., Friend, E., Samuel, S. P., Goykhman, I., Kalra, S., Janzer, S., & George, J. C. (2021). 3D Printing of Carotid Artery and Aortic Arch Anatomy: Implications for Preprocedural Planning and Carotid Stenting. The Journal of invasive cardiology, 33(9), E723–E729.
Milano, E. G., Capelli, C., Wray, J., Biffi, B., Layton, S., Lee, M., Caputo, M., Taylor, A. M., Schievano, S., & Biglino, G. (2019). Current and future applications of 3D printing in congenital cardiology and cardiac surgery. The British journal of radiology, 92(1094), 20180389. https://doi.org/10.1259/bjr.20180389
Moro, F. H., Carvalho, R. A., Barud, H. S., Amaral, A. C., & Silva, E. J. (2022). Modificação de bico de impressora 3D para obtenção de suportes para uso em medicina regenerativa. Research, Society and Development, 11(6), e58111629472. https://doi.org/10.33448/rsd-v11i6.29472
Noor, N., Shapira, A., Edri, R., Gal, I., Wertheim, L., & Dvir, T. (2019). 3D Printing of Personalized Thick and Perfusable Cardiac Patches and Hearts. Advanced science (Weinheim, Baden-Wurttemberg, Germany), 6(11), 1900344. https://doi.org/10.1002/advs.201900344
Ripley, B., Kelil, T., Cheezum, M. K., Goncalves, A., Di Carli, M. F., Rybicki, F. J., Steigner, M., Mitsouras, D., & Blankstein, R. (2016). 3D printing based on cardiac CT assists anatomic visualization prior to transcatheter aortic valve replacement. Journal of cardiovascular computed tomography, 10(1), 28–36. https://doi.org/10.1016/j.jcct.2015.12.004
Sousa, M. M. C., Bezerra, I. N., Nogueira, F. D., Veras, L. M. C., & Bezerra, D. M. (2021). O manejo pós operatório do implante do valvar aórtico percutâneo com uso de anticoagulantes e antiagregantes plaquetários: Uma revisão de literatura. Research, Society and Development, 10(6), e58410615631. https://doi.org/10.33448/rsd-v10i6.15631
Thorburn, C., Abdel-Razek, O., Fagan, S. et al. (2020). Three-dimensional printing for assessment of paravalvular leak in transcatheter aortic valve implantation. Journal of Cardiothoracic Surgery,15(1), 211. https://doi.org/10.1186/s13019-020-01255-3
Tuncay, V., & van Ooijen, P. (2019). 3D printing for heart valve disease: a systematic review. European radiology experimental, 3(1), 9. https://doi.org/10.1186/s41747-018-0083-0
Utiyama, B., Hernandes, C., Senra, T., Gospos, M., Sá, R., Leme, J., Fonseca, J., Drigo, E., Leão, T., Pinto, I., & Andrade, A. (2014). Construção de biomodelos por impressão 3D para uso na prática clínica: experiencia do Instituto Dante Pazzanese de Cardiologia. XXIV Congresso Brasileiro de Engenharia Biomédica – CBEB. Disponível em: https://www.canal6.com.br/cbeb/2014/artigos/cbeb2014_submission_095.pdf
Vukicevic, M., Mosadegh, B., Min, J. K., & Little, S. H. (2017). Cardiac 3D Printing and its Future Directions. JACC. Cardiovascular imaging, 10(2), 171–184. https://doi.org/10.1016/j.jcmg.2016.12.001
Xenofontos, P., Zamani, R., & Akrami, M. (2022). The application of 3D printing in preoperative planning for transcatheter aortic valve replacement: a systematic review. Biomedical engineering online, 21(1), 59. https://doi.org/10.1186/s12938-022-01029-z
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Guilherme Henrique Iaccino Borges; Igor Mundim Zendron; Matheus Hernandes Vieira Vaz; Rafaela Melo Macedo; Thaís Ribeiro Garcia; Larissa Schults Teixeira; Deborah Gerrane Damásio Nascimento; Laize Evelyn Magalhães de Brito Alvares; Caroline Almeida Resplande; Anna Laura Silva Oliveira; Guilherme Martins Tolini; Jalsi Tacon Arruda
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.