Innovación en el tratamiento de la estenosis aórtica mediante impresión 3D

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i14.35450

Palabras clave:

Anatomía; Cardiología; Cirugía; Educación médica.

Resumen

El uso de piezas 3D avanza en un sentido más amplio de la educación, hacia la interdisciplinariedad. Varias áreas ya utilizan esta tecnología para enseñar a la comunidad académica, incluso investigaciones más complejas como la impresión de órganos y aplicaciones de diseño en prótesis. La tecnología actual permite la impresión precisa de la anatomía cardíaca en materiales que se asemejan a las propiedades reales del corazón y los vasos, lo que permite la exploración de opciones, desafíos y posibilidades de la impresión 3D en el campo de la enfermedad cardíaca valvular, con el fin de proporcionar una idea del estado actual del arte y el desarrollo en esta área específicamente. Así, el presente estudio describe el potencial en el proceso de enseñanza-aprendizaje, en relación con la estenosis aórtica, utilizando metodologías Hands-on y modelos producidos en impresora 3D. Se realizó una revisión integrativa de la literatura utilizando los términos MeSH: “impresión 3d” y “estenosis aórtica”. El advenimiento de la tecnología de impresión 3D es capaz de crear modelos físicos anatómicamente precisos y específicos del paciente, convirtiendo imágenes 3D virtuales en la pantalla plana de la computadora en modelos 3D palpables adecuados para la simulación intervencionista, lo que permite una reducción del tiempo quirúrgico. El uso de modelos impresos en 3D puede facilitar el desarrollo de nuevos dispositivos y nuevas técnicas quirúrgicas. Sin embargo, las limitaciones de este modelo siguen chocando con el alto costo, la calidad de imagen del examen y el tiempo de impresión.

Citas

Araujo, M. C. E., Duarte, M. M. S., Louredo, L. M., Louredo, J. M., & Arruda, J. T. (2021). Contribuições da engenharia reversa e produção de modelos 3D para o ensino médico. Research, Society and Development, 10(11), e385101119692. https://doi.org/10.33448/rsd-v10i11.19692

Bompotis, G., Meletidou, M., Karakanas, A., Sotiriou, S., Sachpekidis, V., Konstantinidou, M., Spanopoulos, K., Styliadis, I., & Lazaridis, I. (2020). Transcatheter Aortic Valve Implantation using 3-D printing modeling assistance. A single-center experience. Hellenic journal of cardiology: HJC = Hellenike kardiologike epitheorese, 61(2), 131–132. https://doi.org/10.1016/j.hjc.2019.01.012

Corrigan, F. E., Gleason, P. T., Condado, J. F., Lisko, J. C., Chen, J. H., Kamioka, N., Keegan, P., Howell, S., Clements, S. D., Jr, Babaliaros, V. C., & Lerakis, S. (2019). Imaging for Predicting, Detecting, and Managing Complications After Transcatheter Aortic Valve Replacement. JACC. Cardiovascular imaging, 12(5), 904–920. https://doi.org/10.1016/j.jcmg.2018.07.036

Duarte, M. M. S., Araujo, M. C. E., Louredo, L. M., Louredo, J. M., & Arruda, J. T. (2021). Aplicabilidades da técnica de fotogrametria no ensino de Anatomia Humana. Research, Society and Development, 10(11), e51101119328. https://doi.org/10.33448/rsd-v10i11.19328

Fan, Y., Wong, R., & Lee, A. P. (2019). Three-dimensional printing in structural heart disease and intervention. Annals of translational medicine, 7(20), 579. https://doi.org/10.21037/atm.2019.09.73

Garcia, T. R., Macedo, R. M., Vaz, M. H. V., Borges, G. H. I., Zendron, I. M., & Arruda, J. T. (2022). Impressão 3D de peças anatômicas como ferramentas de educação e auxílio na prática clínica. Research, Society and Development, 11(13), e248111335234. https://doi.org/10.33448/rsd-v11i13.35234

Grimard, B. H., Safford, R. E., & Burns, E. L. (2016). Aortic Stenosis: Diagnosis and Treatment. American family physician, 93(5), 371–378.

Hussein, N., Honjo, O., Barron, D. J., & Yoo, S. J. (2021). Supravalvular aortic stenosis repair: surgical training of 2 repair techniques using 3D-printed models. Interactive cardiovascular and thoracic surgery, 33(6), 966–968. https://doi.org/10.1093/icvts/ivab198

Koche, J. C. (2011). Fundamentos de metodologia científica. Petrópolis: Vozes.

Lau, I., & Sun, Z. (2018). Three-dimensional printing in congenital heart disease: A systematic review. Journal of medical radiation sciences, 65(3), 226–236. https://doi.org/10.1002/jmrs.268

Levin, D., Mackensen, G. B., Reisman, M., McCabe, J. M., Dvir, D., & Ripley, B. (2020). 3D Printing Applications for Transcatheter Aortic Valve Replacement. Current cardiology reports, 22(4), 23. https://doi.org/10.1007/s11886-020-1276-8

Lindman, B. R., Dweck, M. R., Lancellotti, P., Généreux, P., Piérard, L. A., O'Gara, P. T., & Bonow, R. O. (2020). Management of Asymptomatic Severe Aortic Stenosis: Evolving Concepts in Timing of Valve Replacement. JACC. Cardiovascular imaging, 13(2 Pt 1), 481–493. https://doi.org/10.1016/j.jcmg.2019.01.036

Louredo, L. M., Duarte, M. M. S., Araújo, M. C. E., Louredo, J. M., & Arruda, J. T. (2021). Uso de prototipagem rápida ou manufatura aditiva para estudos de casos clínicos e planejamento de técnica cirúrgica utilizando modelos 3D. Research, Society and Development, 10(12), e336101220403. https://doi.org/10.33448/rsd-v10i12.20403

Memon, S., Friend, E., Samuel, S. P., Goykhman, I., Kalra, S., Janzer, S., & George, J. C. (2021). 3D Printing of Carotid Artery and Aortic Arch Anatomy: Implications for Preprocedural Planning and Carotid Stenting. The Journal of invasive cardiology, 33(9), E723–E729.

Milano, E. G., Capelli, C., Wray, J., Biffi, B., Layton, S., Lee, M., Caputo, M., Taylor, A. M., Schievano, S., & Biglino, G. (2019). Current and future applications of 3D printing in congenital cardiology and cardiac surgery. The British journal of radiology, 92(1094), 20180389. https://doi.org/10.1259/bjr.20180389

Moro, F. H., Carvalho, R. A., Barud, H. S., Amaral, A. C., & Silva, E. J. (2022). Modificação de bico de impressora 3D para obtenção de suportes para uso em medicina regenerativa. Research, Society and Development, 11(6), e58111629472. https://doi.org/10.33448/rsd-v11i6.29472

Noor, N., Shapira, A., Edri, R., Gal, I., Wertheim, L., & Dvir, T. (2019). 3D Printing of Personalized Thick and Perfusable Cardiac Patches and Hearts. Advanced science (Weinheim, Baden-Wurttemberg, Germany), 6(11), 1900344. https://doi.org/10.1002/advs.201900344

Ripley, B., Kelil, T., Cheezum, M. K., Goncalves, A., Di Carli, M. F., Rybicki, F. J., Steigner, M., Mitsouras, D., & Blankstein, R. (2016). 3D printing based on cardiac CT assists anatomic visualization prior to transcatheter aortic valve replacement. Journal of cardiovascular computed tomography, 10(1), 28–36. https://doi.org/10.1016/j.jcct.2015.12.004

Sousa, M. M. C., Bezerra, I. N., Nogueira, F. D., Veras, L. M. C., & Bezerra, D. M. (2021). O manejo pós operatório do implante do valvar aórtico percutâneo com uso de anticoagulantes e antiagregantes plaquetários: Uma revisão de literatura. Research, Society and Development, 10(6), e58410615631. https://doi.org/10.33448/rsd-v10i6.15631

Thorburn, C., Abdel-Razek, O., Fagan, S. et al. (2020). Three-dimensional printing for assessment of paravalvular leak in transcatheter aortic valve implantation. Journal of Cardiothoracic Surgery,15(1), 211. https://doi.org/10.1186/s13019-020-01255-3

Tuncay, V., & van Ooijen, P. (2019). 3D printing for heart valve disease: a systematic review. European radiology experimental, 3(1), 9. https://doi.org/10.1186/s41747-018-0083-0

Utiyama, B., Hernandes, C., Senra, T., Gospos, M., Sá, R., Leme, J., Fonseca, J., Drigo, E., Leão, T., Pinto, I., & Andrade, A. (2014). Construção de biomodelos por impressão 3D para uso na prática clínica: experiencia do Instituto Dante Pazzanese de Cardiologia. XXIV Congresso Brasileiro de Engenharia Biomédica – CBEB. Disponível em: https://www.canal6.com.br/cbeb/2014/artigos/cbeb2014_submission_095.pdf

Vukicevic, M., Mosadegh, B., Min, J. K., & Little, S. H. (2017). Cardiac 3D Printing and its Future Directions. JACC. Cardiovascular imaging, 10(2), 171–184. https://doi.org/10.1016/j.jcmg.2016.12.001

Xenofontos, P., Zamani, R., & Akrami, M. (2022). The application of 3D printing in preoperative planning for transcatheter aortic valve replacement: a systematic review. Biomedical engineering online, 21(1), 59. https://doi.org/10.1186/s12938-022-01029-z

Publicado

21/10/2022

Cómo citar

BORGES, G. H. I. .; ZENDRON, I. M. .; VAZ, M. H. V. .; MACEDO, R. M. .; GARCIA, T. R. .; TEIXEIRA, L. S. .; NASCIMENTO, D. G. D. .; ALVARES, L. E. M. de B. .; RESPLANDE, C. A. .; OLIVEIRA, A. L. S. .; TOLINI, G. M. .; ARRUDA, J. T. Innovación en el tratamiento de la estenosis aórtica mediante impresión 3D. Research, Society and Development, [S. l.], v. 11, n. 14, p. e123111435450, 2022. DOI: 10.33448/rsd-v11i14.35450. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/35450. Acesso em: 15 may. 2024.

Número

Sección

Ciencias de la salud