Potencial de la planta Psidium guajava L. contra la enfermedad de Alzheimer al revertir el déficit de memoria inducido por escopolamina
DOI:
https://doi.org/10.33448/rsd-v11i14.36167Palabras clave:
Enfermedad de Alzheimer; Psidium guajava L.; Actividad anticolinesterasa; Escopolamina; Memoria de trabajo.Resumen
La enfermedad de Alzheimer (EA) representa la principal causa de demencia en todo el mundo. Ejemplos de enfoques prometedores en la investigación de productos contra la EA es la evaluación in vitro de la inhibición de la enzima acetilcolinesterasa y la protección contra el estrés oxidativo inducido en células neuronales por H2O2, ya utilizado en extractos de P. guajava. En este trabajo, se evaluará la eficacia in vivo del extracto de hoja de P. guajava para revertir el déficit de memoria de trabajo inducido por escopolamina. Para ello se utilizaron 33 ratones suizos, machos, albinos (35-45g). Los animales de control (Ctr) recibieron solución salina, el déficit de memoria fue inducido por escopolamina 5 mg/kg (Esc). El extracto etanólico de hoja de P. guajava (EFPG) se diluyó en etanol al 5% en solución salina y se administró a dos concentraciones diferentes (EFPG 1 y 10 mg/kg). La administración de escopolamina promovió el déficit de memoria de trabajo (cambios espontáneos: Ctr: 69,2 ± 4,9; Esc: 51,8 ± 5,0). A la dosis de 10 mg/kg de EEPG se observó un bloqueo parcial del déficit de memoria (Esc + EEPG 10: 62,6 ± 3,1). No se observaron cambios estadísticamente significativos entre los grupos cuando se evaluó el número de entradas en los brazos durante la prueba (Eventos: Ctr: 22,9±2,7; Esc: 28,1±2,9; Esc + EEPG 1: 25,2±3,1; Esc + EEPG 10: 23,6±2,6). Como se reportó actividad anticolinesterásica in vitro para el extracto de hoja de P. guajava, el presente trabajo contribuye a agregar evidencia de su potencial terapéutico para el tratamiento de la enfermedad de Alzheimer.
Citas
Babaei, F., Mirzababaei, M., & Nassiri-Asl, M. (2018). Quercetin in Food: Possible Mechanisms of Its Effect on Memory. Journal of Food Science, 83(9), 2280–2287. https://doi.org/10.1111/1750-3841.14317
Barbosa Filho, J. M., Medeiros, K. C. P., Diniz, M. de F. F. M., Batista, L. M., Athayde-Filho, P. F., Silva, M. S., Cunha, E. V. L. da, Almeida, J. R. G. S., & Quintans-Júnior, L. J. (2006). Natural products inhibitors of the enzyme acetylcholinesterase. Revista Brasileira de Farmacognosia, 16(2), 258–285. https://doi.org/10.1590/s0102-695x2006000200021
Cavalcanti, J. L. de S., & Engelhardt, E. (2012). Aspectos da fisiopatologia da doença de Alzheimer esporádica Pathophysiological features of sporadic Alzheimer ’ s disease. Rev Bras Neurol, 48(4), 21–29. http://files.bvs.br/upload/S/0101-8469/2012/v48n4/a3349.pdf
Correia, J. P. S., Campos, A. L. B., Correia, S. S., & Nascimento, C. S. (2021). Epidemiologia da Doença de Alzheimer em Sergipe no período de 2008 a 2018: morbidade hospitalar e mortalidade. Research, Society and Development, 10(4), e50010414391https://doi.org/10.33448/rsd-v10i4.14391
Cianciosi, D., Varela-Lopez, A., Forbes-Hernandez, T. Y., Gasparrini, M., Afrin, S., Reboredo-Rodriguez, P., Zhang, J. J., Quiles, J. L., Nabavi, S. F., Battino, M., & Giampieri, F. (2018). Targeting molecular pathways in cancer stem cells by natural bioactive compounds. Pharmacological Research, 135(July), 150–165. https://doi.org/10.1016/j.phrs.2018.08.006
Corpas, R., Griñán-Ferré, C., Rodríguez-Farré, E., Pallàs, M., & Sanfeliu, C. (2019). Resveratrol Induces Brain Resilience Against Alzheimer Neurodegeneration Through Proteostasis Enhancement. Molecular Neurobiology, 56(2), 1502–1516. https://doi.org/10.1007/s12035-018-1157-y
Daswani, P. G., Gholkar, M. S., & Birdi, T. J. (2018). Psidium guajava: A Single Plant for Multiple Health Problems of Rural Indian Population. Pharmacogn Rev, 1(2). https://doi.org/10.4103/phrev.phrev
Davies, P., & Maloney, A. J. F. (1976). Selective loss of central cholinergic neurons in Alzheimer's disease. The Lancet, 308(8000), 1403.de Souza, T. da S., Ferreira, M. F. da S., Menini, L., Souza, J. R. C. de L., Bernardes, C. de O., & Ferreira, A. (2018). Chemotype diversity of Psidium guajava L. Phytochemistry, 153(April), 129–137. https://doi.org/10.1016/j.phytochem.2018.06.006
De Falco, A., Cukierman, D. S., Hauser-Davis, R. A., & Rey, N. A. (2016). Doença de Alzheimer: Hipóteses etiológicas e perspectivas de tratamento. Quimica Nova, 39(1), 63–80. https://doi.org/10.5935/0100-4042.20150152
Ejaz Ahmed, M., Islam, F., Khan, M. M., Javed, H., Vaibhav, K., Khan, A., Tabassum, R., Ashafaq, M., Islam, F., & Safhi, M. M. (2013). Amelioration of cognitive impairment and neurodegeneration by catechin hydrate in rat model of streptozotocin-induced experimental dementia of Alzheimer’s type. Neurochemistry International, 62(4), 492–501. https://doi.org/10.1016/j.neuint.2013.02.006
Elizalde-González, M. P., & Segura-Rivera, E. J. (2018). Volatile compounds in different parts of the fruit Psidium guajava L. cv. “Media China” identified at distinct phenological stages using HS-SPME-GC-QTOF/MS. Phytochemical Analysis, 29(6), 649–660. https://doi.org/10.1002/pca.2778
Halevas, E., Nday, C. M., & Salifoglou, A. (2016). Hybrid catechin silica nanoparticle influence on Cu(II) toxicity and morphological lesions in primary neuronal cells. Journal of Inorganic Biochemistry, 163(Ii), 240–249. https://doi.org/10.1016/j.jinorgbio.2016.04.017
Ilha, S., Backes, D. S., Santos, S. S. C., Gautério-Abreu, D. P., Silva, B. T. da, & Pelzer, M. T. (2016). Alzheimer’s disease in elderly/family: Difficulties experienced and care strategies. Escola Anna Nery - Revista de Enfermagem, 20(1), 138–146. https://doi.org/10.5935/1414-8145.20160019
Jeong, C., Jeong, H. R., Choi, G. N., Kwak, J. H., Kim, J. H., Park, S.-J., Kim, D.-O., Shim, K.-H., Choi, S.-G., & Heo, H. J. (2011). Neuronal Cell Protective Effects of Hot Water Extracts from Guava (Psidium guajava L.) Fruit and Leaf. The Korean Society of Food Preservation, 18(1), 124–129. https://doi.org/10.1016/j.jgr.2020.01.005
Katzman, R., & Jackson, J. E. (1991). Alzheimer Disease: Basic and Clinical Advances. Journal of the American Geriatrics Society, 39(5), 516–525. https://doi.org/10.1111/j.1532-5415.1991.tb02500.x
Kivipelto, M., Ngandu, T., Laatikainen, T., Winblad, B., Soininen, H., & Tuomilehto, J. (2006). Risk score for the prediction of dementia risk in 20 years among middle aged people: a longitudinal, population-based study. Lancet Neurology, 5(9), 735–741. https://doi.org/10.1016/S1474-4422(06)70537-3
Luchsinger, J. A., & Mayeux, R. (2004). Cardiovascular risk factors and Alzheimer’s disease. Current Atherosclerosis Reports, 6(4), 261–266. https://doi.org/10.1007/s11883-004-0056-z
Massunari, L., Novais, R. Z., Oliveira, M. T., Valentim, D., Dezan, E., & Duque, C. (2017). Antimicrobial activity and biocompatibility of the Psidium cattleianum extracts for endodontic purposes. Brazilian dental journal, 28, 372-379. https://doi.org/10.1590/0103-6440201601409
Moreno, L. C. G. e. I., Puerta, E., Suárez-Santiago, J. E., Santos-Magalhães, N. S., Ramirez, M. J., & Irache, J. M. (2017). Effect of the oral administration of nanoencapsulated quercetin on a mouse model of Alzheimer’s disease. International Journal of Pharmaceutics, 517(1–2), 50–57. https://doi.org/10.1016/j.ijpharm.2016.11.061
Meyer, J. C., Harirari, P., & Schellack, N. (2016). Overview of Alzheimer’s disease and its management. SA Pharmaceutical Journal, 83(9), 48–56.
Morais, S. M. de, Lopes, F. F. da S., Fontenele, G. A., Silva, M. V. F. da, Fernandes, V. B., & Alves, D. R. (2021). Total phenolic content and antioxidant and anticholinesterase activities of medicinal plants from the State’s Cocó Park (Fortaleza-CE, Brazil). Research, Society and Development, 10(5), e7510514493. https://doi.org/10.33448/rsd-v10i5.14493
Organização Mundial de Saúde (OMS), 2020. Disponível em: https://www.who.int/news-room/fact-sheets/detail/dementia Acesso em: 21/05/2021.
Penido, A. B., De Morais, S. M., Ribeiro, A. B., Alves, D. R., Rodrigues, A. L. M., Dos Santos, L. H., & De Menezes, J. E. S. A. (2016). Medicinal plants from northeastern Brazil against Alzheimer’s disease. Evidence-Based Complementary and Alternative Medicine, 2016. https://doi.org/10.1155/2017/1753673
Sabogal-Guáqueta, A. M., Muñoz-Manco, J. I., Ramírez-Pineda, J. R., Lamprea-Rodriguez, M., Osorio, E., & Cardona-Gómez, G. P. (2015). The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. In Neuropharmacology (Vol. 93). Elsevier Ltd. https://doi.org/10.1016/j.neuropharm.2015.01.027
Sarter, M., Bodewitz, G., & Stephens, D. N. (1988). Attenuation of scopolamine-induced impairment of spontaneous alternation behaviour by antagonist but not inverse agonist and agonist β-carbolines. Psychopharmacology, 94(4), 491-495. https://doi.org/10.1007/BF00212843.
Serrano-Pozo, A., Frosch, M. P., Masliah, E., & Hyman, B. T. (2011). Neuropathological alterations in Alzheimer disease. Cold Spring Harbor Perspectives in Medicine, 1(1). https://doi.org/10.1101/cshperspect.a006189
Sharma, K. (2019). Cholinesterase inhibitors as Alzheimer's therapeutics. Molecular medicine reports, 20(2), 1479-1487. https://doi.org/10.3892/mmr.2019.10374
Tandon, N., Roy, M., Roy, S., & Gupta, N. (2012). Protective effect of Psidium guajava in arsenic-induced oxidative stress and cytological damage in rats. Toxicology International, 19(3), 245–249. https://doi.org/10.4103/0971-6580.103658
Uribe-Beltrán, M. de J., Ahumada-Santos, Y. P., Díaz-Camacho, S. P., Eslava-Campos, C. A., Reyes-Valenzuela, J. E., Báez-Flores, M. E., Osuna-Ramírez, I., & Delgado-Vargas, F. (2017). High prevalence of multidrug-resistant Escherichia coli isolates from children with and without diarrhoea and their susceptibility to the antibacterial activity of extracts/fractions of fruits native to Mexico. Journal of Medical Microbiology, 66(7), 972–980. https://doi.org/10.1099/jmm.0.000548
Vargas-Restrepo, F., Sabogal-Guáqueta, A. M., & Cardona-Gómez, G. P. (2018). Quercetin ameliorates inflammation in CA1 hippocampal region in aged triple transgenic Alzheimer’s disease mice model. Biomedica, 38, 1–23. https://doi.org/10.7705/biomedica.v38i0.3761
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Wildson Max Barbosa da Silva; Jhenifer Macena dos Santos; Laura de Paula Costa ; Lucas Silva de Holanda; João Batista Andrade Neto; Alexandre Penido Batista; Selene Maia de Morais; Carolina de Melo Souza
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.