Cerámica superhidrofóbica a partir de la modificación de la superficie

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i15.37195

Palabras clave:

Sustentabilidad; Cerámica; Autolimpieza; Súper hidrofóbico.

Resumen

Los recubrimientos superhidrofóbicos llaman la atención debido a sus amplias aplicaciones. Sin embargo, la mayoría de las sustancias y componentes químicos utilizados para su fabricación son generalmente nocivos para el medio ambiente y tienen un costo elevado, lo que dificulta su aplicación. El objetivo de esta investigación es desarrollar recubrimientos superhidrofóbicos para sustratos cerámicos, priorizando el uso de materiales ecoeficientes. El sustrato cerámico utilizado en este estudio fue la baldosa cocida sin vitrificar, debido a que presenta una superficie rugosa adecuada para la deposición de los revestimientos obtenidos. La fabricación de recubrimientos superhidrofóbicos se realizó utilizando materiales sustentables y de bajo costo, lo que hace viable su uso.

Biografía del autor/a

Eliane Ayres, Universidade do Estado de Minas Gerais

Graduado en Ingeniería Química por la Universidad Federal de Río de Janeiro (1979),
Maestría (2002) y Doctorado (2006) en Ingeniería Metalúrgica y de Materiales por la
Universidad Federal de Minas Gerais en el área de polímeros.
Tiene experiencia en la industria química donde se desempeñó como investigadora en un laboratorio de investigación.
y desarrollo en el área de síntesis de polímeros acrílicos (emulsión, solución y suspensión)
y poliuretanos (1979-1990). Fue becario de desarrollo tecnológico e industrial (DTI)
(2007-2008) en el laboratorio de polímeros y compuestos de la UFMG. Desde 2009 eres profesor
de educación superior nivel VII-C de la Universidad del Estado de Minas Gerais (UEMG) en
departamento de sistemas productivos (DESP) y docente permanente de la
posgrado en diseño strictu sensu (PPGD) en la UEMG. Miembro de la cámara de evaluación
de arquitectura e ingeniería de la FAPEMIG Supervisa investigaciones de maestría y doctorado
en el área de Tecnología, Materiales y Ergonomía. Guió el proyecto ganador del XXVI
Premio Joven Científico y proyecto premiado con mención de honor en el premio MERCOSUR
de Ciencia y Tecnología en 2015. Es profesora titular y miembro del cuerpo colegiado
posgrado en ingeniería de materiales en REDEMAT
(Red Temática en Ingeniería de Materiales UFOP-UEMG)

Citas

Bak-Andersen, M. (2021) Reintroducing Materials for Sustainable Design: Design Process and Educational Practice. Routledge: New York, 2021. 185 p.

Butt, H.-J., Roisman, I. V., Brinkmann, M., Papadopoulos, P., Vollmer, D., & Semprebon, C. (2014). Characterization of super liquid-repellent surfaces. Current Opinion in Colloid & Interface Science, 19(4), 343–354. https://doi.org/10.1016/j.cocis.2014.04.009

Bai, H., Zhang, L., & Gu, D. (2018). Micrometer-sized spherulites as building blocks for lotus leaf-like superhydrophobic coatings. Applied Surface Science, 459, 54–62. https://doi.org/10.1016/j.apsusc.2018.07.183

Camargo, K. C., Michels, A. F., Rodembusch, F. S., & Horowitz, F. (2012). Multi-scale structured, superhydrophobic and wide-angle, antireflective coating in the near-infrared region. Chemical Communications, 48(41), 4992. https://doi.org/10.1039/c2cc30456b

Carrascosa, L. A. M., Facio, D. S., & Mosquera, M. J. (2016). Producing superhydrophobic roof tiles. Nanotechnology, 27(9), 095604. https://doi.org/10.1088/0957-4484/27/9/095604

Facio, D. S., Carrascosa, L. A. M., & Mosquera, M. J. (2017). Producing lasting amphiphobic building surfaces with self-cleaning properties. Nanotechnology, 28(26), 265601. https://doi.org/10.1088/1361-6528/aa73a3

Falah Toosi, S., Moradi, S., Ebrahimi, M., & Hatzikiriakos, S. G. (2016). Microfabrication of polymeric surfaces with extreme wettability using hot embossing. Applied Surface Science, 378, 426–434. https://doi.org/10.1016/j.apsusc.2016.03.116

Hong Tham Phan, T., & Kim, S.-J. (2022). Super-hydrophobic microfluidic channels fabricated via xurography-based polydimethylsiloxane (PDMS) micromolding. Chemical Engineering Science, 258, 117768. https://doi.org/10.1016/j.ces.2022.117768

Inagaki, m.; Hozumi, a.; Okudera, h.; Yokogawa, y.& Kameyama, t. Improvement of chemical resistance of apatite_titanium composite coatings deposited by RF plasma-spraying: surface modification by chemical vapor deposition. Thin Solid Films, v. 382, p. 69_73, 2001.

Jung, Y. C., & Bhushan, B. (2009). Wetting Behavior of Water and Oil Droplets in Three-Phase Interfaces for Hydrophobicity/philicity and Oleophobicity/philicity†.Langmuir, 25(24), 14165–14173. https://doi.org/10.1021/la901906h

Kota, A. K., Choi, W., & Tuteja, A. (2013). Superomniphobic surfaces: Design and durability. MRS Bulletin, 38(5), 383–390. https://doi.org/10.1557/mrs.2013.10

Lin, Z., Zhang, W., Zhang, W., Xu, L., Xue, Y., & Li, W. (2022). Fabrication of Ni–Co/Cu super-hydrophobic coating with improved corrosion resistance. Materials Chemistry and Physics, 277, 125503. https://doi.org/10.1016/j.matchemphys.2021.125503

Ma, D., Lin, H., Zheng, K., Hei, H., Ma, Y., Zhou, B., Wu, Y., Wang, Y., Gao, J., Yu, S., & Xue, Y. (2022). Rose-like Cr–Fe robust super-hydrophobic surfaces with high adhesion and corrosion resistance. Journal of Materials Science, 57(39), 18640–18654. https://doi.org/10.1007/s10853-022-07724-5

Miodownik, M. (2013) Stuff Matters: Exploring the Marvelous Materials That Shape Our Man-Made World. 1. ed. London: Penguin, 2013.

Muthiah, P., Bhushan, B., Yun, K., & Kondo, H. (2013). Dual-layered-coated mechanically-durable superomniphobic surfaces with anti-smudge properties. Journal of Colloid and Interface Science, 409, 227–236. https://doi.org/10.1016/j.jcis.2013.07.032

Nakano, K., Ito, T., Onouchi, Y., Yamanaka, M., & Akita, S. (2015). Importance of gelation and crystallization for producing superhydrophobic surfaces from mixtures of hydrogenated castor oil and fatty acids. Colloid and Polymer Science, 294(1), 69–75. https://doi.org/10.1007/s00396-015-3748-8

Raimundo, J., Vale, C., Martins, I., Fontes, J., Graça, G., & Caetano, M. (2015). Elemental composition of two ecologically contrasting seamount fishes, the bluemouth (Helicolenus dactylopterus) and blackspot seabream (Pagellus bogaraveo). Marine Pollution Bulletin, 100(1), 112–121. https://doi.org/10.1016/j.marpolbul.2015.09.021

Sousa, A.S., Oliveira, G.S.& Alves, L.H. (2021) A Pesquisa Bibliográfica: Princípios E Fundamentos, Cadernos da Fucamp, v.20, n.43, p.64-83.

Wan, X., Li, Y., Tian, C., Zhou, J. s Qian, S. & Wang L. (2022) Fabrication and properties of super‑hydrophobic microstructureson magnesium alloys by laser–chemical etching, Applied Physics, v.128:899https://doi.org/10.1007/s00339-022-05998-9

Wan, X., Li, Y., Tian, C., Zhou, J., Qian, S., & Wang, L. (2022). Fabrication and properties of super-hydrophobic microstructures on magnesium alloys by laser–chemical etching. Applied Physics A, 128(10). https://doi.org/10.1007/s00339-022-05998-9

Wen, M., Zhong, J., Zhao, S., Bu, T., Guo, L., Ku, Z., Peng, Y., Huang, F., Cheng, Y.-B., & Zhang, Q. (2017). Robust transparent superamphiphobic coatings on non-fabric flat substrates with inorganic adhesive titania bonded silica. Journal of Materials Chemistry A, 5(18), 8352–8359. https://doi.org/10.1039/c7ta01999h

Wong, J. X. H., Asanuma, H., & Yu, H.-Z. (2012). Simple and reproducible method of preparing transparent superhydrophobic glass. Thin Solid Films, 522, 159–163. https://doi.org/10.1016/j.tsf.2012.08.033

Wu, T., Pan, Y., & Li, L. (2010). Study on superhydrophobic hybrids fabricated from multiwalled carbon nanotubes and stearic acid. Journal of Colloid and Interface Science, 348(1), 265–270. https://doi.org/10.1016/j.jcis.2010.04.006

Xue, C.-H., Jia, S.-T., Chen, H.-Z., & Wang, M. (2008). Superhydrophobic cotton fabrics prepared by sol–gel coating of TiO2and surface hydrophobization. Science and Technology of Advanced Materials, 9(3), 035001. https://doi.org/10.1088/1468-6996/9/3/035001

Yang, Y., Li, X., Zheng, X., Chen, Z., Zhou, Q., & Chen, Y. (2017). 3D‐Printed Biomimetic Super‐Hydrophobic Structure for Microdroplet Manipulation and Oil/Water Separation. Advanced Materials, 30(9), 1704912. https://doi.org/10.1002/adma.201704912

Yildirim, A., Budunoglu, H., Daglar, B., Deniz, H., & Bayindir, M. (2011). One-Pot Preparation of Fluorinated Mesoporous Silica Nanoparticles for Liquid Marble Formation and Superhydrophobic Surfaces. ACS Applied Materials & Interfaces, 3(6), 1804–1808. https://doi.org/10.1021/am200359e

Publicado

22/11/2022

Cómo citar

SANTOS, L. C. G. de S. .; AYRES, E. . Cerámica superhidrofóbica a partir de la modificación de la superficie. Research, Society and Development, [S. l.], v. 11, n. 15, p. e435111537195, 2022. DOI: 10.33448/rsd-v11i15.37195. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/37195. Acesso em: 27 sep. 2024.

Número

Sección

Ingenierías