Coproducción de polihidroxialcanoatos y levana por Halomonas smyrnensis AAD6T
DOI:
https://doi.org/10.33448/rsd-v11i16.37925Palabras clave:
Halófilos; Halomonas smyrnensis; Polihidroxialcanoatos; Levana; Coproducción.Resumen
En este trabajo se investigó la producción simultánea de polímeros microbianos levan y poli[3-hidroxibutirato] (PHB), un tipo de polihidroxialcanoatos. El estudio involucró la fermentación de melaza de sacarosa por H. smyrnensis AAD6T (cepa BAE2) para producir PHB (intracelular) y leván (extracelular). Ambos polímeros fueron aislados y caracterizados por FTIR. Levana también se caracterizó mediante cromatografía en capa fina (CCD) y análisis viscosimétrico. La cantidad de biomasa fue de 25 g hasta el final de la fermentación. La tasa de PHB fue de 0,015 g en ambos medios y la productividad promedio de PHB fue de 6,0 x 10-4 g de PHA/g de biomasa. La tasa más altas de leván fue de 9 g/L en el rango de 72 a 80 h, en el medio a base de melaza. Los espectros FTIR mostraron señales específicas para cada uno de los polímeros, como el pico a 1700 para el grupo carbonilo de ésteres para el PHB y señales a 900 y 800, que son señales típicas para los anillos de fructosa de levano. Además, la hidrólisis ácida del leván reveló que estaba formado únicamente por fructosa, como lo confirmó la CCD. Con este estudio, H. smyrnensis AAD6T BAE2 coprodujo PHB y levan utilizando una fuente de carbono de bajo costo, mostrando un gran potencial para reducir los costos de fabricación de biopolímeros.
Citas
Albuquerque, P. B. S., Araujo, K. S., Silva, K. A. A., Houllou, L. M., Locatelli, G. O. & Malafaia, C. B. (2018) Potential production of bioplastics polyhydroxyalkanoates using residual glycerol. Journal of Environmental Analysis and Progress, 3, 1, 055-060.
Albuquerque, P. B. S., & Malafaia, C. B. (2018) Perspectives on the production, structural characteristics and potential applications of bioplastics derived from polyhydroxyalkanoates. International Journal of Biological Macromolecules,107, 615-625.
Alves, A. A., Siqueira, E. C., Barros, M. P. S., Silva, P. E. C., & Houllou, L. M. (2022) Polyhydroxyalkanoates: a review of microbial production and technology application. International Journal of Environmental Science and Technology, 1-12.
Amaro, T. M. M. M., Rosa, D., Comi, G. & Iacumin, L. (2019). Prospects for the use of whey for polyhydroxyalkanoate (PHA) production. Frontiers in Microbiology, 10, 992, 1-10.
Arvidson, S. A., Rinehart, B. T. & Gadala-Maria, F. (2006). Concentration regimes of solutions of levan polysaccharide from Bacillus sp. Carbohydrate Polymers, 65, 2, 144-149.
Benigar, E., Tomsic, M., Sretenovic, S., Stopar, D., Jamnik, A. & Dogsa, I. (2015). Evaluating SAXS results on aqueous solutions of various bacterial levan utilizing the string-of-beads model. Acta Chimica Slovenica, 62, 509-517.
Castro, T. R., Macedo, D. C., Chiroli, D. M. G., Silva, R. C. & Tebcherani, S. M. (2022). The potential of cleaner fermentation processes for bioplastic production: A narrative review of polyhydroxyalkanoates (PHA) and polylactic acid (PLA). Journal of Polymers and the Environment, 30, 810-832.
Dahech, I., Fakhfakh, J., Damak M, Belghith, H., Mejdoub., H. & Belghith, K. S. (2013). Structural determination and NMR characterization of a bacterial exopolysaccharide. International Journal of Biological Macromolecules, 59, 417-422.
Djuríc, A., Gojgíc-Cvijovíc, G., Jakovljevíc, D., Kekez, B., Kojíc, J. S., Mattinen, M. L., Harju, I. E., Vrvíc, M. M. & Beskoski, V. P. (2017). Brachybacterium sp. CH-KOV3 isolated from an oil-polluted environment – a new producer of levan. International Journal of Biological Macromolecules, 104, 311-321.
Erkorkmaz, B. A., Kırtel, O., Abaramak, G., Nikerel, E., & Öner, E. T. (2022). UV and chemically induced Halomonas smyrnensis mutants for enhanced levan productivity. Journal of Biotechnology, 356, 19-29.
Jathore, N. R., Bule, M. V., Tilay, A. V. & Annapure, U. S. (2012). Microbial levan from Pseudomonas fluorescens: Characterization and medium optimization for enhanced production. Food Science and Biotechnology, 21, 4, 1045-1053.
Kang, S.A., Jang, K.H., Seo, J.W., Kim, K.H., Kim, Y.H., Rairakhwada, D., Seo, M.Y., Lee, J.O., Ha, S.D., Kim, C.H., & Rhee, S.K. (2009). Levan: applications and perspectives. In: Rehm, B., Oner, A. (Eds.), Microbial Production of Biopolymers and Polymer Precursors: Applications and Perspectives. Caister Academic Press, Poole, pp. 145-161.
Kırtel, O., Lescrinier, E., Van den Ende, W. & Öner, E. T. (2019). Discovery of fructans in Archaea. Carbohydrate Polymers, 220, 149-156.
Küçükaşik, F., Kazak, H., Güney, D., Finore, I., Poli, A., Yenigün, O., Nicolaus, B. & Oner, E. T. (2011). Molasses as fermentation substrate for levan production by Halomonas sp. Applied Microbiology and Biotechnology, 89, 1729-1740.
Lima, L. B., Silva, M. D., Viçoso, T. G. L., Martins, M. L. F., Silva, J. J., Silva, J. P. T., Lapena, S. A. B., Cruz, C. H. G., & Ernandes, F. M. P. G. (2020) Produção de levana por fermentação submersa utilizando Zymomonas mobilis cct 4494. Research, Society and Development, 9, 10, e3899108526. http://dx.doi.org/10.33448/rsd-v9i10.8526.
Liu, J., Luo, J., Ye, H., Sun, Y., Lu, Z. & Zeng, X. (2010). Medium optimization and structural characterization of exopolysaccharides from endophytic bacterium Paenibacillus polymyxa EJS-3. Carbohydrate Polymers, 79, 206-213.
Öner, E. T., Hernández, L. & Combie, J. (2016). Review of Levan polysaccharide: From a century of past experiences to future prospects. Biotechnology Advances, 34, 5, 827-844.
PlasticsEurope (2021). Plastics - the Facts. https://plasticseurope.org/resources/publications/. Accessed 22 Set 2022.
Samui, A. B. & Kanai, T. (2019). Polyhydroxyalkanoates based copolymers. International Journal of Biological Macromolecules, 140, 522-537.
Shih, I-L., Chen, L-D., Wang, T-C., Wu, J-Y., & Liaw, K-S. (2010). Tandem production of levan and ethanol by microbial fermentation. Green Chemistry, 12, 7, 1242-1247.
Shih, I-L., Wang, T-C., Chou, S-Z., & Lee, G-D. (2011). Sequential production of two biopolymers-levan and poly-ε-lysine by microbial fermentation. Bioresource Technology, 102, 4, 3966-3969.
Siqueira, E. C., Rebouças, J. S., Pinheiro, I. O., & Formiga, F. R. (2020) Levan-based nanostructured systems: An overview. International Journal of Pharmaceutics, 580, 119242.
Siqueira, E.C., Vieira, A.M., Pinheiro, I.O. & Formiga, F.R. (2017). Development of nanoparticles from a biofabricated fructose polymer. Tissue Engineering: Part A, 23, S-154.
Stojkoviç, B., Sretenovic, S., Dogsa, I., Poberaj, I. & Stopar, D. (2015). Viscoelastic properties of levan-DNA mixtures important in microbial biofilm formation as determined by micro- and macrorheology. Biophysical Journal, 108, 758-765.
Runyon, J. R., Nilsson, L., Ulmius, M., Castro, A., Ionescu, R., Andersson, C. & Schmidt, C. (2014). Characterizing changes in levan physicochemical properties in different pH environments using asymmetric flow field-flow fractionation. Analytical and Bioanalytical Chemistry, 406,1597-1605.
Timilsena, Y. P., Adhikari, R., Kasapis, S. & Adhikari, B. (2015). Rheological and microstructural properties of the chia seedpolysaccharide. International Journal of Biological Macromolecules, 81, 991-999.
Tohme, S., Hacıosmanoğlu, G. G., Eroğlu, M. S., Kasavi, C., Genç, S., Can, S. G., & Oner, E. T. (2018). Halomonas smyrnensis as a cell factory for co-production of PHB and levan. International Journal of Biological Macromolecules, 2018, 1238-1246.
Torres, C. A. V., Ferreira, A. R. V., Freitas, F., Reis, M. A. M., Coelhoso, I., Sousa, I. & Alves, V. D. (2015). Rheological studies of the fucose-rich exopolysaccharide FucoPol. International Journal of Biological Macromolecules, 79, 611-617.
Vega‑Vidaurri, J., Hernandez‑Rosas, F., Rios‑Corripio, M. A., Loeza‑Corte, J. M., Rojas‑Lopez, M., & Hernandez‑Martinez, R. (2022). Coproduction of polyhydroxyalkanoates and exopolysaccharide by submerged fermentation using autochthonous bacterial strains. Chemical Papers, 76, 2419-2429.
Xu, X., Gao, C., Liu, Z., Wu, J., Han, J., Yan, M. & Wu, Z. (2016). Characterization of the levan produced by Paenibacillus bovis sp. nov BD3526 and its immunological activity. Carbohydrate Polymers, 144, 178-186.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Edmilson Clarindo de Siqueira; Laureen Michelle Houllou
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.