Uso de residuos de malta de la industria cervecer como medio alternativo para el cultivo de Spirulina platensis y Spirulina máxima

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i16.38249

Palabras clave:

Microorganismos; Fotosintéticos; Residuo; Cultivo.

Resumen

Las especies pertenecientes al género Spirulina se encuentran entre los microorganismos fotosintéticos de mayor importancia comercial. Este trabajo tuvo como objetivo evaluar el cultivo de Spirulina platensis y Spirulina maxima con reemplazo parcial de medio sintético por medio de cultivo RM (barley malt residuo) de bajo costo, así como extraer compuestos bioactivos aplicables a la industria alimentaria. Se evaluaron parámetros de crecimiento, composición de la biomasa, concentraciones de proteínas, carbohidratos, lípidos, ácidos grasos, extracción de ficocianinas, polisacáridos y monosacáridos. Los cultivos que utilizaron RM a una concentración del 50% obtuvieron un crecimiento equivalente al control. El contenido de clorofila fue mayor para las dos especies de Spirulina cultivadas en el medio de control. Los niveles de ficocianina fueron más altos para Spirulina platensis. Los mayores contenidos de proteína se encontraron para Spirulina platensis (55,9g 100g-1) seguida de Spirulina maxima (53,3g 100g-1) cultivada en RM. Los ácidos poliinsaturados linoleico y alfa-linolénico presentaron mayores porcentajes en las cepas cultivadas en MR. El contenido de PUFA fue mayor en los cultivos en medio RM, variando del 57 al 59%. La extracción de polisacáridos con agua caliente/ultrasonido mostró valores superiores en las dos especies cultivadas en medio RM, variando de 8,3 a 11,2%. Se destacó el contenido de exopolisacáridos en el cultivo con medio RM (191 a 193mg·L-1) para ambas especies. Los resultados muestran que el uso de residuos de malta como sustituto parcial del medio control es adecuado como medio alternativo para el cultivo de Spirulinas platensis y maxima. Además, se destaca el potencial de sus compuestos bioactivos para la industria alimentaria.

Citas

Abd El Baky, H. H., El Baroty, G. S., & Ibrahem, E. A. (2015). Functional characters evaluation of biscuits sublimated with pure phycocyanin isolated from Spirulina and Spirulina biomass. Nutricion Hospitalaria, 32(1), 231-241.https://doi.org/10.3305/nh.2015.32.1.8804

Alavi, N., & Golmakani, M.-T. (2017). Antioxidant properties of whole-cell Spirulina (Arthrospira platensis) powder expressed in olive oil under accelerated storage conditions. Journal of Applied Phycology, 29(6), 2971–2978. http://dx.doi.org/10.1007/s10811-017-1190-7

Amanatin, D. R., Rofidah, E., Rosady, N., & Duratun, S. (2013, December). Produksi protein sel tunggal (pst) Spirulina sp. sebagai super food dalam upaya penanggulangan gizi buruk dan kerawanan pangan di Indonesia. In Pekan Ilmiah Mahasiswa Nasional Program Kreativitas Mahasiswa-Penelitian 2013. Indonesian Ministry of Research, Technology and Higher Education.

Antelo, F. S., Costa, J. A. V., & Kalil, S. J. (2015). Purification of C-phycocyanin from Spirulina platensis in aqueous two-phase systems using an experimental design. Brazilian Archives of Biology and Technology, 58, 1-11. http://dx.doi.org/10.1590/S1516-8913201502621

AOAC International (2016). Official Methods of Analysis of AOAC International, Official Method 935.46. 21 ed. Rockville.

Asgashi, A. Fazilati, M., Latifi, A.M., Salavati, H., Choopani, A. (2016). Journal of Applied Biotechnology Reports, 3, (1).

Benelhadj, S., Gharsallaoui, A., Degraeve, P., Attia, H., & Ghorbel, D. (2016). Effect of pH on the functional properties of Arthrospira (Spirulina) platensis protein isolate. Food Chemistry, 194, 1056-1063. https://doi.org/10.1016/j.foodchem.2015.08.133.

Bernaerts, T.M.M., Gheysen, L., Foubert, I., Hendrickx, M.E., Van, Loey AM. (2019). The potential of microalgae and their biopolymers as structuring ingredients in food: A review. Biotechnol Adv, 37 (8).

Bligh, E.G.; Dyer, W.J (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911-917.

Boiago, M. M., Dilkin, J. D., Kolm, M. A., Barreta, M., Souza, C. F., Baldissera, M. D., ... & Da Silva, A. S. (2019). Spirulina platensis in Japanese quail feeding alters fatty acid profiles and improves egg quality: Benefits to consumers. Journal of Food Biochemistry, 43(7). https://doi.org/10.1111/jfbc.12860

Bonos, E., Kasapidou, E., Kargopoulos, A., Karampampas, A., Nikolakakis, I., Christaki, E., & Florou-Paneri, P. (2016). Spirulina as a functional ingredient in broiler chicken diets. South African Journal of Animal Science, 46(1), 94-102. https://doi.org/10.4314/sajas.v46i1.12

Brião, V.B., Sbeghen, A.L., Colla, L.M., Castoldi, V., Seguenka, B., Schimidt, G.O., & Costa, J.A.V. (2020). Is downstream ultrafiltration enough for production of food-grade phycocyanin from Arthrospira platensis? Journal of Applied Phycology, 32(2), 1129-1140. https://doi.org/10.1007/s10811-019-02006-1

Çelekli, A., Topyürek, A., Markou, G., & Bozkurt, H. (2016). A Multivariate Approach to Evaluate Biomass Production, Biochemical Composition and Stress Compounds of Spirulina platensis Cultivated in Wastewater. Applied Biochemistry and Biotechnology, 180(4), 728-739. https://doi.org/10.1007/s12010-016-2128-2.

Cevallos, C. G., Ortega, M.H. (2016). Methods for Extraction, Isolation and Purification of C-phycocyanin: 50 years of Research in Review. Int. J. Food Nutr. Sci., 3. https://doi.org/10.15436/2377-0619.16.946

Chen, X., Wu, M., Yang, Q., & Wang, S. (2017). Preparation, characterization of food grade phycobiliproteins from Porphyra haitanensis and the application in liposome-meat system. Lwt, 77, 468-474. https://doi.org/10.1016/j.lwt.2016.12.005]

Chentir, I., Hamdi, M., Li, S., Doumandji, A., Markou, G., & Nasri, M. (2018). Stability, bio-functionality and bio-activity of crude phycocyanin from a two-phase cultured Saharian Arthrospira sp. strain. Algal Research, 35, 395-406. https://doi.org/10.1016/j.lwt.2016.12.005

Chia, S. R., Chew, K. W., Show, P. L., Xia, A., Ho, S. H., & Lim, J. W. (2019). Spirulina platensis based biorefinery for the production of value-added products for food and pharmaceutical applications. Bioresource Technology, 289, 121727. https://doi.org/ 10.1016/j.biortech.2019.121727.

Credence Research. Algae Products Market By Application (Nutraceuticals, Food & Feed Supplements, Pharmaceuticals, Paints & Coatings, Pollution Control, Others) - Growth, Future Prospects & Competitive Analysis, 2018 - 2026. 2018. Url (https://www.credenceresearch.com/report/algae-products-market).

Dananjaya, S. H. S., Thao, N. T., Wijerathna, H. M. S. M., Lee, J., Edussuriya, M., Choi, D., & Kumar, R. S. (2020). In vitro and in vivo anticandidal efficacy of green synthesized gold nanoparticles using Spirulina maxima polysaccharide. Process Biochemistry, 92, 138-148. https://doi.org/10.1016/j.procbio.2020.03.003

Dianursanti, Taurina, Z., & Indraputri, C. M. (2018, February). Optimization growth of Spirulina platensis in bean sprouts extract medium with urea fertilizer for phycocyanin production as antioxidant. In AIP Conference Proceedings (Vol. 1933, No. 1, p. 030014). AIP Publishing LLC.

Dos Santos, R. R., Araújo, O.Q. F., De Medeiros, J. L., & Chaloub, R. M. (2016). Cultivation of Spirulina maxima in medium supplemented with sugarcane vinasse. Bioresource Technology, 204. https://doi.org/10.1016/j.biortech.2015.12.077

Duarte, J. H., Cardoso, L. G., de Souza, C. O., Nunes, I. L., Druzian, J. I., de Morais, M. G., & Costa, J. A. V. (2020). Brackish groundwater from Brazilian backlands in Spirulina cultures: potential of carbohydrate and polyunsaturated fatty acid production. Applied Biochemistry and Biotechnology, 190(3), 907-917. https://doi.org/10.1007/s12010-019-03126-7

Enzing, C., Ploeg, M., Sijtisma, L. (2014). Microalgae-based products for the food and feed sector: an outlook for Europe. Jrc. Scientificand policy reports.

Fradinho, P., Niccolai, A., Soares, R., Rodolfi, L., Biondi, N., Tredici, M. R., ... & Raymundo, A. (2020). Effect of Arthrospira platensis (spirulina) incorporation on the rheological and bioactive properties of gluten-free fresh pasta. Algal Research, 45, 101743. https://doi.org/10.1016/j.algal.2019.101743

García, J. R., Fernández, F. A., & Sevilla, J. F. (2012). Development of a process for the production of l-amino-acids concentrates from microalgae by enzymatic hydrolysis. Bioresource Technology, 112, 164-170. https://doi.org/10.1016/j.biortech.2012.02.094.

Ghaeni, M., & Roomiani, L. (2016). Review for application and medicine effects of Spirulina, microalgae. Journal of Advanced Agricultural Technologies, 3(2). https://doi.org/10.18178/joaat.3.2.114-117

Güroy, B., Karadal, O., Mantoğlu, S., & Cebeci, O. I. (2017). Effects of different drying methods on C-phycocyanin content of Spirulina platensis powder. Ege Journal of Fisheries and Aquatic Sciences, 34(2), 129-132. https://doi.org/10.12714/egejfas.2017.34.2.02

Hadiyanto, H., & Adetya, N. P. (2018). Response surface optimization of lipid and protein extractions from Spirulina platensis using ultrasound assisted osmotic shock method. Food Science and Biotechnology. doi:10.1007/s10068-018-0389-y

Hlaing, S. A. A., Sadiq, M. B., & Anal, A. K. (2019). Enhanced yield of Scenedesmus obliquus biomacromolecules through medium optimization and development of microalgae based functional chocolate. Journal of Food Science and Technology. doi:10.1007/s13197-019-04144-3

Hu, I. C. (2019). Production of potential coproducts from microalgae. In Biofuels from algae (pp. 345-358). Elsevier.

Hultberg, M., Lind, O., Birgersson, G., & Asp, H. (2017). Use of the effluent from biogas production for cultivation of Spirulina. Bioprocess and Biosystems Engineering, 40(4), 625-631. https://doi.org/10.1007/s00449-016-1726-2

İlter, I., Akyıl, S., Demirel, Z., Koç, M., Conk-Dalay, M., & Kaymak-Ertekin, F. (2018). Optimization of phycocyanin extraction from Spirulina platensis using different techniques. Journal of Food Composition and Analysis, 70, 78-88. https://doi.org/10.1016/j.jfca.2018.04.007

Izadi, M., & Fazilati, M. (2018). Extraction and purification of phycocyanin from spirulina platensis and evaluating its antioxidant and anti-inflammatory activity. Asian Journal of Green Chemistry, 2(4), 364-379. https://doi.org/10.22034/ajgc.2018.63597

Janoschka, T., Martin, N., Martin, U., Friebe, C., Morgenstern, S., Hiller, H., ... & Schubert, U. S. (2015). An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials. Nature, 527(7576), 78-81. https://doi.org/10.1038/nature15746

Jung, J. Y., Kim, S., Lee, H., Kim, K., Kim, W., Park, M. S., ... & Yang, J. W. (2014). Use of extracts from oyster shell and soil for cultivation of Spirulina maxima. Bioprocess and Biosystems Engineering, 37(12), 2395-2400. https://doi.org/10.1007/s00449-014-1216-3.

Kadam, S. U., Tiwari, B. K., & O’Donnell, C. P. (2013). Application of novel extraction technologies for bioactives from marine algae. Journal of Agricultural and Food Chemistry, 61(20), 4667-4675. https://doi.org/10.1021/jf400819p.

Khanra, S., Mondal, M., Halder, G., Tiwari, O. N., Gayen, K., & Bhowmick, T. K. (2018). Downstream processing of microalgae for pigments, protein and carbohydrate in industrial application: A review. Food and Bioproducts Processing, 110, 60-84. https://doi.org/10.1016/j.fbp.2018.02.002

Khemiri, S., Khelifi, N., Nunes, M. C., Ferreira, A., Gouveia, L., Smaali, I., & Raymundo, A. (2020). Microalgae biomass as an additional ingredient of gluten-free bread: Dough rheology, texture quality and nutritional properties. Algal Research, 50. https://doi.org/ 10.1016/j.algal.2020.101998

Kochert,G.(1978).Carbohydrate determination by the phenol- sulfuric. in: Hellembust,J.A,Graigie,J.S.(eds). Handbook of Phycological Methods.Physiological and Biochemical methods.Cambridge: Cambridge: Cambridge University, p.95-97.

Kumar, B. R., Deviram, G., Mathimani, T., Duc, P. A., Pugazhendhi, A. (2019). Microalgae as rich source of polyunsaturated fatty acids. Biocatalysis and Agricultural Biotechnology, 17.

Kurd, F., & Samavati, V. (2015). Water soluble polysaccharides from Spirulina platensis: Extraction and in vitro anti-cancer activity. International Journal of Biological Macromolecules, 74, 498-506. https://doi.org/10.1016/j.ijbiomac.2015.01.005

Leema, J.T. M.; Kirubagaran , R.., VInithkumar , N.V., Dheenan , P.S., & high, S.K. (2010). Hight value pigment production from Arthrospira (Spirulina) platensis cultured in seawater. Bioresource Technology, 101(23), 9221-7. https://doi.org/10.1016/j.biortech.2010.06.120

Lowry, O.H., et al. (1951) Protein measurement with folin phenol reagent. The Journal of Biological Chemistry, 193, 265-275.

Manirafasha, E., Ndikubwimana, T., Zeng, X., Lu, Y., & Jing, K. (2016). Phycobiliprotein: Potential microalgae derived pharmaceutical and biological reagent. Biochemical Engineering Journal, 109, 282-296. https://doi.org/10.1016/j.bej.2016.01.025

Markou, G., & Nerantzis, E. (2013). Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotechnology Advances, 31(8), 1532-1542. https://doi.org/10.1016/j.biotechadv.2013.07.011.

Markou, G., Angelidaki, I., & Georgakakis, D. (2012). Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Applied Microbiology and Biotechnology, 96(3), 631-645.. https://doi.org/10.1007/s00253-012-4398-0.

Marzorati, S., Schievano, A., Idà, A., & Verotta, L. (2020). Carotenoids, chlorophylls and phycocyanin from Spirulina: supercritical CO 2 and water extraction methods for added value products cascade. Green Chemistry, 22(1), 187-196. https://doi.org/10.1039/C9GC03292D

Matos, J., Cardoso, C., Bandarra, N. M., & Afonso, C. (2017). Microalgae as healthy ingredients for functional food: a review. Food & Function, 8(8), 2672-2685. https://doi.org/10.1039/c7fo00409e

Menezes, R. S, Leles, M. I. G., Soares, A. T., Franco, P. I. M., AntoniosI Filho, N. R., Sant´ANna, C. L., Vieira, A. A. H. (2013). Avaliação da potencialidade de microalgas dulcícolas como fonte de matéria-prima graxa para a produção de biodiesel. Química Nova, 13, (1), p. 10-15.

Michael, A.; Kyewalyanga, M.S., & Lugomela, C.V. (2019). Biomass and nutritive value of Spirulina (Arthrospira fusiformis) cultivated in a cost-effective médium. Annals of Microbiology, 69, 1387–1395. https://doi.org/10.1007/s13213-019-01520-4

Mishra, P., Singh, V. P., & Prasad, S. M. (2014). Spirulina and its nutritional importance: A possible approach for development of functional food. Biochemical. Pharmacology, 3, e171. https://doi.org/10.4172/2167-0501.1000e171

Mostolizadeh, S., Moradi, Y., Mortazavi, M. S., Motallebi, A., & Ghaeni, M. (2017). Application effects of Spirulina powder on the fatty acid and amino acid composition of pasta. Isfj, 26(4), 119-130.

Munawaroh, H. S. H., Fathur, R. M., Gumilar, G., Aisyah, S., Yuliani, G., Mudzakir, A., & Wulandari, A. P. (2019). Characterization and physicochemical properties of chlorophyll extract from Spirulina sp. Journal of Physics: Conference Series, 1280, 022013. https://doi.org/10.1088/1742-6596/1280/2/022013

Navarini, L., Afeltra, A., Gallo Afflitto, G., & Margiotta, D. P. E. (2017). Polyunsaturated fatty acids: any role in rheumatoid arthritis? Lipids in Health and Disease, 16(1). doi:10.1186/s12944-017-0586-3

Nouri, E., Abbasi, H., & Rahimi, E. (2018). Effects of processing on stability of water-and fat-soluble vitamins, pigments (C-phycocyanin, carotenoids, chlorophylls) and colour characteristics of Spirulina platensis. Quality Assurance and Safety of Crops & Foods, 10(4), 335-349. https://doi.org/10.3920/QAS2018.1304

Núñez, M. V. M., García-Martínez, B. I., Rosado-Pérez, J., Santiago-Osorio, E., Pedraza-Chaverri, J., & Hernández-Abad, V. J. (2019). The Effect of 600 mg Alpha-lipoic Acid Supplementation on Oxidative Stress, Inflammation, and RAGE in Older Adults with Type 2 Diabetes Mellitus. Oxidative Medicine and Cellular Longevity, 2019, 1–12. doi:10.1155/2019/3276958

Paliwal, C., Mitra, M., BHAYAni, K., Bharadwaj, S.V.V., Ghosh, T., Dubey, S., Mishra, S. (2017). Abiotic stresses as tools for metabolites in microalgae. Bioresource Technology, 244. https://doi.org/10.1016/j.biortech.2017.05.058.

Patel, P.; Jethani, H.; Radha, C.; VIjayendra, S. V. N.; Mudliar, S. N.; Sarada, R., & Chauhan, V. S. (2019). Development of a carotenoid enriched probiotic yogurt from fresh biomass of Spirulina and its characterization. Journal of Food Science and Technology, 56(8), 3721-3731. https://doi.org/10.1007/s13197-019-03844-0

Patil, S., Al-Zarea, B. K., Maheshwari, S., & Sahu, R. (2015). Comparative evaluation of natural antioxidants spirulina and aloe vera for the treatment of oral submucous fibrosis. Journal of Oral Biology and Craniofacial Research, 5(1), 11-15.. https://doi.org/10.1016/j.jobcr.2014.12.005

Phélippé, M., Gonçalves, O., Thouand, G., Cogne, G., & Laroche, C. (2019). Characterization of the polysaccharides chemical diversity of the cyanobacteria Arthrospira platensis. Algal Research, 38, 101426. https://doi.org/10.1016/j.algal.2019.101426

Prates, D.F., Radmann, E.M., Hartwig, J.D., Morais, M.G., & Costa, J.A.V. (2018). Spirulina cultivated under different light emitting diodes: enhanced cell growth and phycocyanin production. Bioresource. Technololgy, .256, 38-43. https://doi.org/10.1016/j.biortech.2018.01.122

Pohndorf, R. S., Camara, Á. S., Larrosa, A. P. Q., Pinheiro, C. P., Strieder, M. M., & Pinto, L. A. A. (2016). Production of lipids from microalgae Spirulina sp.: Influence of drying, cell disruption and extraction methods. Biomass and Bioenergy, 93, 25–32. https://doi.org/10.1016/j.biombioe.2016.06.02

Raja, R.; Coelho, A.; Hemaiswarya, S.; Kumar, P.; Carvalho, I. S., & ALagarsamy, A. (2018). Applications of Microalgal Paste and Powder as food and feed: An update using Text Mining Tool. Beni-Suef University Journal of Basic and Applied Sciences, 7(4).https://doi.org/10.1016/j.bjbas.2018.10.004

Raja, R., Hemaiswarya, S., Ganesan, V., & Carvalho, I. S. (2016). Recent developments in therapeutic applications of Cyanobacteria. Critical Reviews in Microbiology, 42(3), 394-405.https://doi.org/10.3109/1040841X.2014.957640

Rajasekar, P., Palanisamy, S., Anjali, R., Vinosha, M., Elakkiya, M., Marudhupandi, T., ... & Prabhu, N. M. (2019). Isolation and structural characterization of sulfated polysaccharide from Spirulina platensis and its bioactive potential: In vitro antioxidant, antibacterial activity and Zebrafish growth and reproductive performance. International journal of biological macromolecules, 141, 809-821. https://doi.org/10.1016/j.ijbiomac.2019.09.024

de Jesus Raposo, M. F., De Morais, A. M. B., & De Morais, R. M. S. C. (2015). Marine polysaccharides from algae with potential biomedical applications. Marine Drugs, 13(5), 2967-3028. https://doi.org/10.3390/md13052967

Roohani, A. M., Abedian Kenari, A., Fallahi Kapoorchali, M., Borani, M. S., Zoriezahra, S. J., Smyley, A. H., & Rombenso, A. N. (2019). Effect of spirulina Spirulina platensis as a complementary ingredient to reduce dietary fish meal on the growth performance, whole‐body composi‐ tion, fatty acid and amino acid profiles, and pigmentation of Caspian brown trout (Salmo trutta caspius) juveniles. Aquaculture Nutrition, 25(3), 633-645. https://doi.org/10.1111/anu.12885

Roza, L. F., Tavernari, F. C., Surek, D., Sordi, C., Silva, M. L. B., Albino, L. F. T., & Boiago, M. M. (2018) Apparent metabolisable energy and amino acid digestibility of microalgae Spirulina platensis as an ingredient in broiler chicken diets. British Poultry Science, 59(5),562-567. https://doi.org/10.1080/00071668.2018.1496401.

Ruiz, S. C. A., Emmery, D. P., Wijffels, R. H., Eppink, M. H., & van den Berg, C. (2018). Selective and mild fractionation of microalgal proteins and pigments using aqueous two‐phase systems. Journal of Chemical Technology & Biotechnology, 93(9), 2774-2783. https://doi.org/10.1002/jctb.5711.

Sandeep K.P., Shukla S.P.,Vennila , A., Purushothaman , C.S., & Manjulekshmi , N. (2015) Cultivation of Spirulina (Arthrospira) platensis in low cost seawater based medium for extraction of value added pigments. Indian Journal of Geo-Marine Sciences, 44, (3).

Salla, A. C. V., Margarites, A. C., Seibel, F. I., Holz, L. C., Brião, V. B., Bertolin, T. E., Colla, L. M., Costa, J. A. V. (2016). Increase in the carbohydrate contente of the microalgae Spirulina platensis in culture by nutrient starvation and the addition of residues of whey protein concentrate. Bioresource Technology, 209, p. 133-141. https://doi.org/1010.1016/j.biortech.2016.02.069.

Shabana, E. F., Gabr, M. A., Moussa, H. R., El-Shaer, E. A., & Ismaiel, M. M. (2017). Biochemical composition and antioxidant activities of Arthrospira (Spirulina) platensis in response to gamma irradiation. Food Chemistry, 214, 550-555. https://doi.org/10.1016/j.foodchem.2016.07.109

Singh, G., & Patidar, S. K. (2018). Microalgae harvesting techniques: A review. Journal of Environmental Management, 217, 499-508. https://doi.org/10.1016/j.jenvman.2018.04.010

Singh, S., Kant, C., Yadav, R. K., Reddy, Y. P., & ABraham, G. (2019). Cyanobacterial Exopolysaccharides: Composition, Biosynthesis, and Biotechnological Applications. Cyanobacteria, 347-358. https://doi.org/10.1016/b978-0-12-814667-5.00017-9

Sinha, S., Patro, N., & Patro, I. K. (2018). Maternal protein malnutrition: Current and future perspectives of spirulina supplementation in neuroprotection. Frontiers in Neuroscience, 12, 966, https://doi.org/10.3389/fnins.2018.00966

Sloth, J. K., Wiebe, M. G., & Eriksen, N. T. (2006). Accumulation of phycocyanin in heterotrophic and mixotrophic cultures of the acidophilic red alga Galdieria sulphuraria. Enzyme and Microbial Technology, 38(1-2), 168–175. https://doi.org/10.1016/j.enzmictec.2005.05.0

Sonani, R. R., Rastogi, R. P., Patel, R., & Madamwar, D. (2016). Recent advances in production, purification and applications of phycobiliproteins. World Journal of Biological Chemistry, 7(1), 100. https://doi.org/10.4331/wjbc.v7.i1.100

Song, W., Zhao, C., & Wang, S. (2013). A large-scale preparation method of high purity C-phycocyanin. International Journal of Bioscience, Biochemistry and Bioinformatics, 3(4), 293-297. https://doi.org/10.7763/IJBBB.2013.V3.216

Soni, R. A., Sudhakar, K., & Rana, R. S. (2017). Spirulina–From growth to nutritional product: A review. Trends in food science & technology, 69, 157-171.https://doi.org/10.1016/j.tifs.2017.09.010

Soni, R. A., Sudhakar, K., & Rana, R. S. (2019). Comparative study on the growth performance of Spirulina platensis on modifying culture media. Energy Reports, 5, 327-336.. https://doi.org/10.1016/j.egyr.2019.02.009

Tang, D.Y.Y., Khoo, K.S., Chew, K.W., Tao, Y., Ho, S.H., Show, P.L., 2020. Potential utilization of bioproducts from microalgae for the quality enhancement of natural products. Bioresour. Technol, 304. https://doi.org/10.1016/J. BIORTECH.2020.122997

Tavanandi, H. A., Devi, A. C., & Raghavarao, K. S. M. S. (2018). A newer approach for the primary extraction of allophycocyanin with high purity and yield from dry biomass of Arthrospira platensis. Separation and Purification Technology, 204, 162-174. https://doi.org/10.1016/j.seppur.2018.04.057

Trinh D.V., & Nguyen P.T.H.(2020). Minimising the Cost of Spirulina platensis Culture Medium using Vinh Hao Natural Mineral Water, Chemical Engineering Transactions, 78, 19-24. https://doi.org/10.3303/CET2078004

Triveti, J., Aila, M., Bangwal, D., & Kaul, S. (2015). Algae based biorefinery—How to make sense? Renewable and Sustainable Energy Reviews, 47, 295-307. https://doi.org/10.1016/j.rser.2015.03.052

Vaz, B. S., Moreira, J. B., de Morais, M. G., & Costa, J. A. V. (2016). Microalgae as a new source of bioactive compounds in food supplements. Current Opinion in Food Science, 7, 73-77. https://doi.org/10.1016/j.cofs.2015.12.006

Salla, A. C. V., Margarites, A. C.; Seibel, F. I., Holz, L. C., Brião, V. B., Bertolin, T. E., & Costa, J. A. V. (2016). Increase in the carbohydrate content of the microalgae Spirulina in culture by nutrient starvation and the addition of residues of whey protein concentrate. Bioresource Technology, 209, 133-141. https://doi.org/10.1016/j.biortech.2016.02.069

Sumanta, N., Haque, C.I., Nishika, J., Suprakash, R. (2014). Spectrophotometric analysis of chlorophylls and carotenoids from commonly grown fern species by using various extracting solvents. Res. J. Chem. Sci. 4, 63–69

Vigani, M., Parisi, C., RodrígueZ-Cerezo, E., Barbosa, M. J., Sijtsma, L., Ploeg, M., & Enzing, C.(2015). Food and feed products from micro-algae: Market opportunities and challenges for the EU. Trends in Food Science & Technology, 42(1), 81-92. https://doi.org/10.1016/j.tifs.2014.12.004

Ye, C., Mu, D., Horowitz, N., Xue, Z., Chen, J., Xue, M., & Zhou, W. (2018).Life cycle assessment of industrial scale production of spirulina tablets. Algal Research, 34, 154-163. https://doi.org/10.1016/j.algal.2018.07.013

Wu, X.; Cen, Q.; Addy, M., Zheng, H., Luo, S.; Liu, Y., Cheng, Y., Zhou, W., Chen, P., Ruan, R.A. (2019). Novel algal biofilm photobioreactor for efficient hog manure wastewater utilization and treatment. Bioresource Technol, 292.

Yu, J., Hu, Y., Xue, M., Dun, Y., LI, S., Peng, N., Liang, Y., Zhao, S.(2016). Purification and identification of antioxidant peptides fromenzymatic hydrolysate ofSpirulina platensis.J. Microbiol. Biotechnol, 26, (7).

Zahroojian, N., Moravej, H., & Shivazad, M. (2013). Effects of dietary ma‐ rine algae (Spirulina platensis) on egg quality and production perfor‐ mance of laying hens. Journal of Agricultural Science and Technology, 15, (7), 1353-1360.

Zhang, X., Yuan, H., Jiang, Z., Lin, D., & Zhang, X. (2018). Impact of surface tension of wastewater on biofilm formation of microalgae Chlorella sp. Bioresource Technology, 266, 498-506. https://doi.org/10.1016/j.biortech.2018.06.082

Publicado

14/12/2022

Cómo citar

VARANDAS, R. C. R. .; PEREIRA, A. C.; ARAÚJO, V. B. da S.; ANDRADE, P. de M. .; NONATO, N. da S.; COSTA, M. H. J. da .; PINA, L. C. C. de .; HANDAM, V. P. T. .; SASSI, C. F. da C. .; CONCEIÇÃO, M. M. da . Uso de residuos de malta de la industria cervecer como medio alternativo para el cultivo de Spirulina platensis y Spirulina máxima. Research, Society and Development, [S. l.], v. 11, n. 16, p. e451111638249, 2022. DOI: 10.33448/rsd-v11i16.38249. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/38249. Acesso em: 30 jun. 2024.

Número

Sección

Ciencias Agrarias y Biológicas