Comparación y Evaluación de Modelos Digitales de Elevación de sensores SRTM, ASTER, TANDEM/TERRASAR –X, NASADEM, COPERNICUS DEM y ALOS PALSAR para análisis digital de terrenos para aplicaciones en saneamiento básico
DOI:
https://doi.org/10.33448/rsd-v12i1.39350Palabras clave:
Modelo de elevación digital; Modelo de terreno digital; Teledetección; Geoprocesamiento.Resumen
Los Modelos Digitales de Elevación (DEM) son modelos matemáticos que reproducen una superficie topográfica a partir de coordenadas cartesianas “x e y”, con atributos altimétricos “z”, donde “z” representa la variación de una superficie. Los MDE tienen varias aplicaciones, se pueden utilizar en la gestión de los recursos hídricos y ambientales. En este contexto, el objetivo de este trabajo fue comparar diferentes sistemas de sensores, SRTM (1, 2 y 3), COPERNICUS DEM, TopoData, ASTER GLOBAL DEM 2 y ALOS PALSAR, a través de un sistema binomial formado por las variables altimétricas, verificando la dispersión y precisión a través de los datos MDE, también a través del análisis físico del perfil altimétrico resultante de la vaguada más larga del municipio de São Carlos. El análisis también consistió en la evaluación estadística del MDE con la Prueba T de Student y Análisis de Varianza (ANOVA). Continuando con los Mapas de Orientación de Taludes, verificando cuales eran los taludes predominantes, mediante los Perfiles Altimétricos de los MDE mostrando pequeñas diferencias de cota y, según el par analizado, diferencias posicionales. La mejor correlación se presentó entre los sensores SRTM, mientras que la peor la dieron los sensores de la familia TANDEM/TERRASAR-X. En cuanto a las comparaciones físicas (visuales) y estadísticas de los datos MDE, se afirma la pertinencia en cuanto a la similitud de los sensores SRTM 30, TopoData y NASADEM, la mayor diferencia entre ASTER GDEM y TANDEM/TERRASAR-X. La diferencia se debe al proceso de constitución de MDE, principalmente por la resolución espacial de cada uno.
Citas
Abrahão, N. (2020). Aplicações GIS para empresas de Saneamento Básico. São Paulo. Ed. ABES. 441 p
Brasil. Congresso. Senado. (1984). Decreto nº 89.817, de 20 de junho de 1984. Estabelece as Instruções Reguladoras das Normas Técnicas da Cartografia Nacional Reguladoras das Normas Técnicas da Cartografia Nacional. 1. ed. Brasilia, DF: Casa Civil, 20 jun. 1984.http://legislacao.planalto.gov.br/legisla/legislacao.nsf/Viw_Identificacao/DEC%2089.817-1984?OpenDocument.
Braz, A. M. (2018). Análise da diferença entre dados altimétricos em uma bacia hidrográfica através da comparação entre modelos digitais de elevação. Ateliê Geográfico, Goiânia, v. 12, n. 1, p. 71-96.
Chagas, C.S et al. (2010). Avaliação de Modelos Digitais de Elevação para aplicação em um mapeamento digital de solos. Campina Grande, Agriambi, v. 14, n. 2. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662010000200014.
Duarte, M. L. et al. (2019). Evaluation of digital elevation models in the delimitation of hydrographic basins in the south of Amazonas region. Journal Of Hyperspectral Remote Sensing. 99-107. https://www.researchgate.net/publication/340242485_Avaliacao_de_Modelos_Digitais_de_Elevacao_na_delimitacao_de_bacias_hidrograficas_na_regiao_Sul_do_Amazonas.
Egg, G. C., Gripp Junior, J., Medeiros, N. das Graças. (2013). Geração de Modelos Digitais de Superfície compostos utilizando imagens do sensor Prism/Alos. Revista Brasileira de Cartografia, Viçosa, v. 5, n. 65, p. 951-966, http://www.seer.ufu.br/index.php/revistabrasileiracartografia/article/download/43873/23137/0.
EMBRAPA. Empresa Brasileira de Pesquisa Agropecuária (2012). Análise Morfométrica de Bacia Hidrográfica – Subsídio à Gestão Territorial Estudo de caso no Alto e Médio Mamanguape. Ministério da Agricultura, Pecuária e Abastecimento. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/84896/1/0000010346-BPD-Analise-morfometrica.pdf.
Fathy, I. et al. (2019). Effect of Topographic Data Accuracy on Watershed Management. International Journal of Environmental Research And Public Health, [S.L.], v. 16, n. 21, p. 4245-4266, 1. MDPI. https://www.mdpi.com/1660-4601/16/21/4245/html.
Florenzano, T. G. (2008). Sensoriamento Remoto para Geomorfologia. In: FLORENZANO, T. G. (Org). Geomorfologia: conceitos e tecnologias atuais. São Paulo. Ed. Oficina de Textos.
INPE. Instituto de Pesquisas Espaciais (2009). TopoData: banco de dados geomorfométricos do brasil. Banco de Dados Geomorfométricos do Brasil. http://www.dsr.inpe.br/topodata/index.php.
Iorio, M. M. et al. (2012). Avaliação de Modelos Digitais de Elevação extraídos de imagem ALOS/PRISM e comparação com os modelos disponibilizados gratuitamente na web. Mato Grosso do Sul. Geociências, v. 31, n. 4. http://www.ppegeo.igc.usp.br/index.php/GEOSP/article/view/7222.
Keys, L., & Baade, J. (2019) Uncertainty in Catchment Delineations as a Result of Digital Elevation Model Choice. Hidrology. Jena, p. 1-22. https://www.mdpi.com/2306-5338/6/1/13/htm.
Littidej, P., & Buasri, N. (2019). Built-Up Growth Impacts on Digital Elevation Model and Flood Risk Susceptibility Prediction in Muaeng District, Nakhon Ratchasima (Thailand). Water, [S.L.], v. 11, n. 7, p. 1496-1525. MDPI http://dx.doi.org/10.3390/w11071496: https://www.mdpi.com/2073-4441/11/7/1496.
Macêdo, R. J Arruda de. (2018). Comparação entre Modelos Digitais de Elevação dos Sensores SRTM E ALOS PALSAR Para Análise Digital De Terreno. Revista Contexto Geográfico, [s. l], v. 3, n. 6, p. 47-55. https://www.seer.ufal.br/index.php/contextogeografico/article/view/6968.
Marion, A. F., Santos, E B dos., Hendges, E R. (2015) Análise De Modelos Digitais de Elevação para Modelagem do Relevo no município de Francisco Beltrão – PR. Revista de Geografia Acadêmica. Francisco Beltrão, p. 50-60. https://www.researchgate.net/publication/288903985_ANALISE_DE_MODELOS_DIGITAIS_DE_ELEVACAO_PARA_MODELAGEM_DO_RELEVO_NO_MUNICIPIO_DE_FRANCISCO_BELTRAO_-_PR.
Matsumoto, P. S. S., Flores, E. F. (2012). Estatística espacial na geografia: um estudo dos acidentes de trânsito em presidente prudente – SP. Geoatos Revista Geografia em Atos, Presidente Prudente, v. 1, n. 12, p. 95-105. https://revista.fct.unesp.br/index.php/geografiaematos/article/view/1755/matsumoto.
Melgaço, L. M., Souza Filho, C. R., Steinmayer, M. (2005). Anais XII Simpósio Brasileiro de Sensoriamento Remoto, 12. Uberaba. Comparação entre modelos digitais de elevação gerados por sensores ópticos e por radar. Goiania. INPE, 2005. 6 p. http://marte.sid.inpe.br/col/ltid.inpe.br/sbsr/2004/11.23.00.56/doc/1215.pdf.
Mendonça Júnior, M. G., & Issmael, L S. (2020). Mito: Precisão e exatidão são sinônimos. x Fato. É importante entender os significados dos termos que relacionam os conceitos físicos e estatísticos com a mensuração em geoinformação. In: Luiz Ugeda (São Paulo). Ordem dos Advogados do Brasil. Geodireito - Mitos e Fatos. São Paulo. Instituto Geodireito. p. 1-134.
Meena S.R., Nachappa T.G. (2019) Impact of spatial resolution of digital elevation model on landslide susceptibility mapping: A case study in Kullu Valley, Himalayas, Geosciences, 9 (8), DOI: 10.3390/geosciences9080360.
Miliaresis, G. C. (2008). The Landcover Impact on the Aspect/Slope Accuracy Dependence of the SRTM-1 Elevation Data for the Humboldt Range. Sensors. Rion, p. 3134-3149. https://pubmed.ncbi.nlm.nih.gov/27879870/.
Mouratidis, A., Ampatzidis, D. (2019). European Digital Elevation Model Validation against Extensive Global Navigation Satellite Systems Data and Comparison with SRTM DEM and ASTER GDEM in Central Macedonia (Greece). International Journal of Geo-Information (ISPRS). Aristotle, p. 1-18 https://www.mdpi.com/2220-9964/8/3/108.
Olaya, F. V. (2004). Hidrología Computacional y Modelos Digitales del Terreno. Teoria-practica-y-filosofia-de-una-nueva-forma-de-analisis-hidrologico 1 v.
Oliveira, C. G., Paradella, W. (2008). An Assessment of the Altimetric Information Derived from Spaceborne SAR (RADARSAT-1, SRTM3) and Optical (ASTER) Data for Cartographic Application in the Amazon Region. Sensors, v. 8, n. 6, p. 3819-3829. http://dx.doi.org/10.3390/s8063819.
Oliveira, C. H. (1996). Planejamento ambiental na cidade de São Carlos (SP) com ênfase nas áreas púbicas e áreas verdes: diagnóstico e proposta Universidade Federal de São Carlos. São Carlos, pp.22.
Oliveira, P. T. S. (2010). Caracterização morfométrica de bacias hidrográficas através de dados SRTM. Revista Brasileira de Engenharia Agrícola e Ambiental. Campina Grande. 819 à 825. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662010000800005
Paradella, W. R., Mura, J. C., Gama, F. F. (2021). Monitoramento DInSAR para mineração e geotecnia. São Paulo. Ed. Oficina dos Textos. 160 p.
Pompermayer, R., C. (2013). Modelagem hidrológica técnicas de geoprocessamento aplicadas ao modelo SCS – Soil Conservation Service – Curve Number. 95 f. Universidade Federal de Minas Gerais. Belo Horizonte. http://www.bibliotecadigital.ufmg.br/dspace/handle/1843/IGCM-9QEM87
Solberg, S., Astrup, R., Weydahl, D. (2013). Detection of Forest Clear-Cuts with Shuttle Radar Topography Mission (SRTM) and Tandem-X InSAR Data. Remote Sensing, [S.L.], v. 5, n. 11, p. 5449-5462. MDPI. https://www.mdpi.com/2072-4292/5/11/5449.
Trevisan, D. P., & Moschini, L. E. (2016). Determinação da fragilidade ambiental do município de São Carlos, São Paulo, Brasil. Geografia Ensino & Pesquisa, [S.L.], v. 20, n. 3, p. 159-167. Universidad Federal de Santa Maria. https://www.researchgate.net/publication/312070404_Determination_of_areas_with_environmental_fragility_of_the_city_Sao_Carlos_Sao_Paulo_Brazil.
Ye, X., Guo, Q., Zhang, Z., Xu, C. (2019). Assessing Hydrological and Sedimentation Effects from Bottom Topography Change in a Complex River–Lake System of Poyang Lake, China. Water, [S.L.], v. 11, n. 7, p. 1489-1502. MDPI AG. http://dx.doi.org/10.3390/w11071489. https://www.mdpi.com/2073-4441/11/7/1489/htm.
Yogi, F. (2018). Parâmetros de estudo em vazão de projeto para renovação de outorga de barramento. 120 f. Universidade Federal de São Carlos. Sorocaba.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Fernando Yogi; Fábio Noel Stanganini
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.