Análisis de la velocidad del viento basado en el modelo logarítmico de cizalladura del viento: un estudio de caso para algunas ciudades brasileñas

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i7.3984

Palabras clave:

Análisis de la velocidad del viento; energía eólica; energía eólica en el aire modelo de viento logarítmico; matriz energética brasileña.

Resumen

La participación de la energía eólica en la generación de electricidad ha crecido significativamente en los últimos años. Debido a la variabilidad en la generación de energía eólica, dadas las variaciones en la velocidad del viento y considerando el aumento en la participación del viento en la matriz energética brasileña, un hecho que refuerza la relevancia de la fuente, este artículo tiene como objetivo presentar los métodos utilizados para analizar la velocidad del viento más utilizado en la literatura y para analizar la velocidad del viento en varias ciudades brasileñas. El modelo logarítmico de cizalladura del viento se utilizó para analizar la velocidad media del viento a partir de datos históricos de doce ciudades brasileñas disponibles públicamente en la base de datos ESRL durante un período de 8 años entre 2010 y 2018. El estudio mostró que localidades como Uruguaiana / RS, Campo Grande / MS, Uberlândia / MG, São Luiz / MA y Corumba / MS son ciudades que presentan una velocidad del viento promedio alta en todas las alturas de referencia y tienen una ganancia de ± 2m / s de velocidad del viento con el mayor altitud de operación. La ganancia de viento logarítmica con altitud o baja altitud se puede notar, a z = 100m tuvimos Wn ≈ 8 m / s en Uruguaiana / RS y Campo Grande / MS, mientras que en Manaus la velocidad promedio del viento es Wn ≈ 5 m / s. Por otro lado, las ciudades de Porto Alegre, Florianópolis, Curitiba y Brasilia, la velocidad media del viento en el rango de altitud ≥ 250 m, se vuelve significativa, lo que permite su implementación si la tecnología es económicamente viable.

Biografía del autor/a

Anny Key de Souza Mendonça, Universidade Federal de Santa Catarina

Pós-Doutora pelo Programa de Pós-Graduação em Engenharia de Produção (2019- 2021) pela Universidade Federal de Santa Catarina (UFSC) na área de Gestão de Operações

Antonio Cezar Bornia, Universidade Federal de Santa Catarina

Professor titular da Universidade Federal de Santa Catarina, lotado no Departamento de Engenharia de produção e Sistemas.

Citas

Amarante, OA, Brower, M, Zack, J, Eolica, CSE & Solutions, T. (2001). Atlas do potencial eólico brasileiro Atlas do potencial eolico brasileiro: Ministerio de Minas e EnergiaEletrobras.

ANEEL. (2018). Matriz de Energia Elétrica. Agência Naciolnal de Energia Elétrica.

Archer, CL. (2014). An introduction to meteorology for airborne wind energy Airborne Wind Energy (pp. 81-94). London: Springer.

Archer, CL, Delle Monache, L & Rife, DL. (2014). Airborne wind energy: Optimal locations and variability. Renewable Energy, 64, 180-186. doi:10.1016/j.renene.2013.10.044

Bagiorgas, HS, Giouli, M, Rehman, S & Al-Hadhrami, LM. (2011). Weibull parameters estimation using four different methods and most energy-carrying wind speed analysis. International Journal of Green Energy, 8(5), 529-554. doi:10.1080/15435075.2011.588767

Bivona, S, Burlon, R & Leone, C. (2003). Hourly wind speed analysis in Sicily. Renewable Energy, 28(9), 1371-1385. doi:10.1016/s0960-1481(02)00230-6

Bloomberg. (2018). Clean Energy Investiment Trends, 2Q 2018. BloombergNEF, 1-77.

Cabello, M & Orza, JAG. (2010). Wind speed analysis in the province of Alicante, Spain. Potential for small-scale wind turbines. Renewable & Sustainable Energy Reviews, 14(9), 3185-3191. doi:10.1016/j.rser.2010.07.002

Cassola, F & Burlando, M. (2012). Wind speed and wind energy forecast through Kalman filtering of Numerical Weather Prediction model output. Applied Energy, 99, 154-166.

Chang, TP. (2011). Performance comparison of six numerical methods in estimating Weibull parameters for wind energy application. Applied Energy, 88(1), 272-282. doi:10.1016/j.apenergy.2010.06.018

Cherubini, A, Papini, A, Vertechy, R & Fontana, M. (2015). Airborne Wind Energy Systems: A review of the technologies. Renewable & Sustainable Energy Reviews, 51, 1461-1476. doi:10.1016/j.rser.2015.07.053

De Lellis, M, Mendonca, AK, Saraiva, R, Trofino, A & Lezana, A. (2016). Electric power generation in wind farms with pumping kites: An economical analysis. Renewable Energy, 86, 163-172. doi:10.1016/j.renene.2015.08.002

Diaf, S & Notton, G. (2013). Evaluation of electricity generation and energy cost of wind energy conversion systems in southern Algeria. Renewable & Sustainable Energy Reviews, 23, 379-390. doi:10.1016/j.rser.2013.03.002

Fagiano, L & Milanese, M. (2012). Airborne Wind Energy: an overview 2012 American Control Conference (pp. 3132-3143). Los Alamitos: IEEE Computer Soc.

Fagiano, L, Milanese, M & Piga, D. (2012). Optimization of airborne wind energy generators. International Journal of Robust and Nonlinear Control, 22(18), 2055-2083. doi:10.1002/rnc.1808

Fechner, U., van der Vlugt, R., Schreuder, E., & Schmehl, R. (2015). Dynamic model of a pumping kite power system. Renewable Energy, 83, 705-716. doi:10.1016/j.renene.2015.04.028

Foley, AM, Leahy, PG, Marvuglia, A & McKeogh, EJ. (2012). Current methods and advances in forecasting of wind power generation. Renewable Energy, 37(1), 1-8. doi:10.1016/j.renene.2011.05.033

Gros, S, Zanon, M, Diehl, M & IEEE. (2012). Orbit Control for a Power Generating Airfoil Based on Nonlinear MPC 2012 American Control Conference (pp. 137-142). Los Alamitos: IEEE Computer Soc.

GWEC, GWEC. (2014). Global Wind Report: Annual market update 2015. URL http://gwec. net/global-figures/graphs/.[Accessed May 18, 2017].

IEA. (2018). Global Energy & CO2 Status Report 2017. International Energy Agency, 1-14.

Jaramillo, OA & Borja, MA. (2004). Wind speed analysis in La Ventosa, Mexico: a bimodal probability distribution case. Renewable Energy, 29(10), 1613-1630. doi:10.1016/j.renene.2004.02.001

Lima, LD & Bezerra, CR. (2012). Wind resource evaluation in Sao Joao do Cariri (SJC) - Paraiba, Brazil. Renewable & Sustainable Energy Reviews, 16(1), 474-480. doi:10.1016/j.rser.2011.08.011

Luchsinger, R. H. (2014). Pumping Cycle Kite Power Airborne Wind Energy.

Lynch, C, Omahony, MJ & Scully, T. (2014). Simplified method to derive the Kalman Filter covariance matrices to predict wind speeds from a NWP model. In R. J. Howlett (Ed.), 6th International Conference on Sustainability in Energy and Buildings (Vol. 62, pp. 676-685). Amsterdam: Elsevier Science Bv.

Manwell, JF, McGowan, JG & Rogers, AL. (2009). Wind Energy Explained: Theory, Design and Application. John Wiley and Sons, Chichester, UK, 2nd edition.

Mendonça, AKS, Vaz, CR, Lezana, ÁGR, Anacleto, CA & Paladini, EP. (2017). Comparing patent and Scientific literature in airborne wind energy. Sustainability, 9(6), 915.

Mishra, SP, Kumar, A & IEEE. (2015). Application of brushless excitation system in Wind power generation 2015 International Conference on Renewable Energy Research and Applications (pp. 104-108). New York: IEEE.

Mostafaeipour, A, Sedaghat, A Dehghan-Niri, A & Kalantar, V. (2011). Wind energy feasibility study for city of Shahrbabak in Iran. Renewable and Sustainable Energy Reviews, 15(6), 2545-2556.

NOAA/ESRL. (2018). Radiosonde Database.

Novara, C, Fagiano, L & Milanese, M. (2013). Direct feedback control design for nonlinear systems. Automatica, 49(4), 849-860. doi:10.1016/j.automatica.2013.01.002

Oyedepo, SO, Adaramola, MS & Paul, SS. (2012). Analysis of wind speed data and wind energy potential in three selected locations in south-east Nigeria. International Journal of Energy and Environmental Engineering, 3(1), 7.

Paul, SS, Adaramola, MS & Oyedepo, SO. (2015). Analysis of Wind Speed Data and Wind Energy Potential in Three Selected Locations in South-East Nigeria Wind Resources and Future Energy Security (pp. 24-49): Apple Academic Press.

Pereira, AS et al. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Acesso em: 11 maio 2020. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Perez, IA, Garcia, MA, Sanchez, ML & de Torre, B. (2004). Analysis of height variations of sodar-derived wind speeds in Northern Spain. Journal of Wind Engineering and Industrial Aerodynamics, 92(10), 875-894. doi:10.1016/j.jweia.2004.05.002

Pishgar-Komleh, S & Akram, A. (2017). Evaluation of wind energy potential for different turbine models based on the wind speed data of Zabol region, Iran. Sustainable Energy Technologies and Assessments, 22, 34-40.

Pishgar-Komleh, SH, Keyhani, A & Sefeedpari, P. (2015). Wind speed and power density analysis based on Weibull and Rayleigh distributions (a case study: Firouzkooh county of Iran). Renewable & Sustainable Energy Reviews, 42, 313-322. doi:10.1016/j.rser.2014.10.028

Rajapaksha, K & Perera, K. (2016). Wind speed analysis and energy calculation based on mixture distributions in Narakkalliya, Sri Lanka. Journal of the National Science Foundation of Sri Lanka, 44(4), 409-416. doi:10.4038/jnsfsr.v44i4.8023

Rasham, AM. (2016). Analysis of Wind Speed Data and Annual Energy Potential at Three locations in Iraq. International Journal of Computer Applications, 137(11).

Razali, AM, Sapuan, MS, Ibrahim, K, Zaharim, A & Sopian, K. (2010). Mapping of Annual Extreme Wind Speed Analysis from 12 Stations in Peninsular Malaysia. In H. Fujita, J. Sasaki, & G. Guizzi (Eds.), Selected Topics in System Science and Simulation in Engineering (pp. 397-+). Athens: World Scientific and Engineering Acad and Soc.

Rehman, S. (2013). Long-Term Wind Speed Analysis and Detection of its Trends Using Mann-Kendall Test and Linear Regression Method. Arabian Journal for Science and Engineering, 38(2), 421-437. doi:10.1007/s13369-012-0445-5

Schulze, G. (2007). Atmospheric observations and numerical weather prediction. South African Journal of Science, 103(7-8), 318-323.

Silva, AFG, Zaparoli, EL & Fisch, G. (2016). An Analysis of Applying Three Statistical Methods for Calculating the Standard Deviation of the Wind Direction at the Tropical Region. Revista Brasileira de Meteorologia, 31(1), 45-51.

Soulouknga, M, Doka, S, Revanna, N, Djongyang, N & Kofane, T. (2018). Analysis of wind speed data and wind energy potential in Faya-Largeau, Chad, using Weibull distribution. Renewable Energy, 121, 1-8.

Tuller, SE, & Brett, AC. (1984). The characteristics of wind velocity that favor the fitting of a weibull distribution in wind-speed analysis. Journal of Climate and Applied Meteorology, 23(1), 124-134. doi:10.1175/1520-0450(1984)023<0124:tcowvt>2.0.co;2

Wagemann, J., Ties, B., Rollenbeck, R., Peters, T., & Bendix, J. (2015). Regionalization of wind-speed data to analyse tree-line wind conditions in the eastern andes of southern ecuador. Erdkunde, 69(1), 3-19. doi:10.3112/erdkunde.2015.01.01

Wilson, WJ, Morcos, MM & IEEE. (2006). Design of an offshore wind farm on Lake Michigan: Part 1 2006 38th Annual North American Power Symposium, Naps-2006 Proceedings (pp. 597-+). New York: IEEE.

Witzler, LT. (2015). Metodologia para reconstrução de séries históricas de vento e geração eólica visando a análise da complementariedade energética no Sistema Interligado Nacional. Universidade de São Paulo.

Zanon, M, Gros, S, Diehl, M & IEEE. (2013). Rotational Start-up of Tethered Airplanes Based on Nonlinear MPC and MHE. 2013 European Control Conference (Ecc), 1023-1028.

Zanon, M, Gros, S, Meyers, J & Diehl, M. (2014). Airborne Wind Energy: Airfoil-Airmass Interaction. Ifac Papersonline, 47(3), 5814-5819.

Zgraggen, AU, Fagiano, L & Morari, M. (2015). Real-Time Optimization and Adaptation of the Crosswind Flight of Tethered Wings for Airborne Wind Energy. IEEE Transactions on Control Systems Technology, 23(2), 434-448. doi:10.1109/tcst.2014.2332537

Zgraggen, AU, Fagiano, L, Morari, M & IEEE. (2013). On Real-Time Optimization of Airborne Wind Energy Generators 2013 IEEE 52nd Annual Conference on Decision and Control (pp. 385-390). New York: IEEE.

Zillmann, U & Bechtle, P. (2018). Emergence and economic dimension of airborne wind energy Airborne Wind Energy (pp. 1-25): Springer.

Descargas

Publicado

12/05/2020

Cómo citar

MENDONÇA, A. K. de S.; BORNIA, A. C. Análisis de la velocidad del viento basado en el modelo logarítmico de cizalladura del viento: un estudio de caso para algunas ciudades brasileñas. Research, Society and Development, [S. l.], v. 9, n. 7, p. e298973984, 2020. DOI: 10.33448/rsd-v9i7.3984. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/3984. Acesso em: 15 ene. 2025.

Número

Sección

Ingenierías