Compuestos de hidroxiapatita, alginato y gelatina utilizados para la regeneración ósea: una revisión sistemática

Autores/as

DOI:

https://doi.org/10.33448/rsd-v12i3.40566

Palabras clave:

Regeneración ósea; Material biocompatible; Durapatita; Alginato; Gelatina.

Resumen

Objetivo: investigar y describir, a través de una revisión sistemática, el comportamiento biológico y el potencial osteogénico de biomateriales compuestos que contienen hidroxiapatita (HA), alginato y gelatina, en diferentes asociaciones, después de la implantación in vivo. Materiales y Métodos: para la búsqueda y selección de artículos se utilizaron las bases de datos Medical Literature Analysis and Retrieval System Online (PubMed/MEDLINE) y Scientific Electronic Library Online (SciELO), publicados entre 2012 y 2022, utilizando los descriptores: “regeneración ósea”; “material biocompatible”; “durapatita”; “alginato”; "gelatina". Inicialmente, foi feita uma associação com o operador booleano “OR” entre os descritos y seus respectivos entry terms, tendo em vista que as plataformas MeSH y DeCS utilizan diferentes termos para referir às mesmas palavras-chave. Posteriormente, empregou-se o operador “AND” em nove associações entre os descritores. Resultados: durante las búsquedas se encontraron 1939 artículos. Después de utilizar los criterios de inclusión y exclusión, se incluyeron 16 estudios en la revisión. Los principales temas encontrados en las búsquedas fueron: HA y Alginato; HA y gelatina; HA, Alginato y Zinc; HA, Gelatina y células mesenquimales; HA, Alginato y Quitosano; HA, alginato y fibrina de seda; HA, Gelatina y dióxido de titanio; HA, alginato y gelatina. Se observó que el HA, asociado a alginato o gelatina, ha mejorado sus propiedades osteogénicas. Consideraciones finales: Los compuestos de HA asociados con alginato y gelatina brindan una gama de aplicaciones y estrategias prometedoras aplicadas a la reparación ósea. Los estudios han demostrado que estos compuestos tienen un gran potencial para su aplicación en la bioingeniería del tejido óseo.

Citas

Adamski, R., & Siuta, D. (2021). Mechanical, structural, and biological properties of chitosan/hydroxyapatite/silica composites for bone tissue engineering. Molecules, 26(7), 1976.

Ait Said, H., Noukrati, H., Oudadesse, H., Ben Youcef, H., Lefeuvre, B., Hakkou, R., Lahcini, M., & Barroug, A. (2021). Formulation and characterization of hydroxyapatite‐based composite with enhanced compressive strength and controlled antibiotic release. Journal of Biomedical Materials Research Part A, 109(10), 1942-1954.

Akgöl, S., Ulucan‐Karnak, F., Kuru, C. I., & Kuşat, K. (2021). The usage of composite nanomaterials in biomedical engineering applications. Biotechnology and Bioengineering, 118(8), 2906-2922.

Almeida, R. S., Prado da Silva, M. H., Navarro da Rocha, D., Ribeiro, I. I. A., Barbosa Júnior, A. A., Miguel, F. B., & Rosa, F. P. (2020). Regeneração de defeito ósseo crítico após implantação de fosfato de cálcio bifásico (β-fosfato tricálcico/pirofosfato de cálcio) e vidro bioativo fosfatado. Cerâmica, 66, 119-125.

Alves Cardoso, D., Van Den Beucken, J. J. J. P., Both, L. L. H., Bender, J., Jansen, J. A., & Leeuwenburgh, S. C. G. (2014). Gelation and biocompatibility of injectable Alginate–Calcium phosphate gels for bone regeneration. Journal of Biomedical Materials Research Part A, 102(3), 808-817.

Amini, A. R., Laurencin, C. T., & Nukavarapu, S. P. (2012). Bone tissue engineering: recent advances and challenges. Critical Reviews™ in Biomedical Engineering, 40(5), 363–408.

Barros, J., Ferraz, M. P., Azeredo, J., Fernandes, M. H., Gomes, P. S., & Monteiro, F. J. (2019). Alginate-nanohydroxyapatite hydrogel system: optimizing the formulation for enhanced bone regeneration. Materials Science and Engineering: C, 105, 109985.

Bartmański, M., Rościszewska, M., Wekwejt, M., Ronowska, A., Nadolska-Dawidowska, M., & Mielewczyk-Gryń, A. (2022). Properties of new composite materials based on hydroxyapatite ceramic and cross-linked gelatin for biomedical Applications. International Journal of Molecular Sciences, 23(16), 9083.

Bello, A. B., Kim, D., Kim, D., Park, H., & Lee, S. H. (2020). Engineering and functionalization of gelatin biomaterials: From cell culture to medical applications. Tissue Engineering Part B: Reviews, 26(2), 164-180.

Bharadwaz, A., & Jayasuriya, A. C. (2020). Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. Materials Science and Engineering: C, 110, 110698.

Cardoso, A. K. M., de Almeida Barbosa Jr, A., Miguel, F. B., Marcantonio Jr, E., Farina, M., de Almeida Soares, G. D., & Rosa, F. P. (2006). Histomorphometric analysis of tissue responses to bioactive glass implants in critical defects in rat calvaria. Cells Tissues Organs, 184(3-4), 128-137.

Catanzano, O., D’esposito, V., Acierno, S., Ambrosio, M. R., De Caro, C., Avagliano, C., Russo, P., Russo, R., Miro, A., Ungaro, F., Calignano, A., Formisano, P., & Quaglia, F. (2015). Alginate–hyaluronan composite hydrogels accelerate wound healing process. Carbohydrate polymers, 131, 407-414.

Chao, S. C., Wang, M. J., Pai, N. S., & Yen, S. K. (2015). Preparation and characterization of gelatin–hydroxyapatite composite microspheres for hard tissue repair. Materials Science and Engineering: C, 57, 113-122.

Chiu, C. K., Lee, D. J., Chen, H., Chow, L. C., & Ko, C. C. (2015). In-situ hybridization of calcium silicate and hydroxyapatite-gelatin nanocomposites enhances physical property and in vitro osteogenesis. Journal of Materials Science: Materials in Medicine, 26(2), 1-14.

Cuozzo, R. C., Sartoretto, S. C., Resende, R. F., Alves, A. T. N., Mavropoulos, E., Prado da Silva, M. H., & Calasans‐Maia, M. D. (2020). Biological evaluation of zinc‐containing calcium alginate‐hydroxyapatite composite microspheres for bone regeneration. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 108(6), 2610-2620.

Díaz-Rodríguez, P., Garcia-Triñanes, P., López, M. E., Santoveña, A., & Landin, M. (2018). Mineralized alginate hydrogels using marine carbonates for bone tissue engineering applications. Carbohydrate polymers, 195, 235-242.

Dixon, D. T., & Gomillion, C. T. (2021). Conductive scaffolds for bone tissue engineering: current state and future outlook. Journal of Functional Biomaterials, 13(1), 1.

Dubey, A., Jaiswal, S., Garg, A., Jain, V., & Lahiri, D. (2021). Synthesis and evaluation of magnesium/co-precipitated hydroxyapatite based composite for biomedical application. Journal of the Mechanical Behavior of Biomedical Materials, 118, 104460.

Ehret, C., Aid-Launais, R., Sagardoy, T., Siadous, R., Bareille, R., Rey, S., Pechev, S., Etienne, L., Kalisky, J., Mones, E., Letourneur, D., & Amedee Vilamitjana, J. (2017). Strontium-doped hydroxyapatite polysaccharide materials effect on ectopic bone formation. PLoS One, 12(9), e0184663.

Fayyazbakhsh, F., Solati-Hashjin, M., Keshtkar, A., Shokrgozar, M. A., Dehghan, M. M., & Larijani, B. (2017). Novel layered double hydroxides-hydroxyapatite/gelatin bone tissue engineering scaffolds: Fabrication, characterization, and in vivo study. Materials Science and Engineering: C, 76, 701-714.

Fernandez de Grado, G., Keller, L., Idoux-Gillet, Y., Wagner, Q., Musset, A. M., Benkirane-Jessel, N., Bornert, F., & Offner, D. (2018). Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management. Journal of tissue engineering, 9, 2041731418776819.

Ferreira, J. R., Padilla, R., Urkasemsin, G., Yoon, K., Goeckner, K., Hu, W. S., & Ko, C. C. (2013). Titanium-enriched hydroxyapatite–gelatin scaffolds with osteogenically differentiated progenitor cell aggregates for calvaria bone regeneration. Tissue Engineering Part A, 19(15-16), 1803-1816.

Fitzpatrick, V., Martín-Moldes, Z., Deck, A., Torres-Sanchez, R., Valat, A., Cairns, D., Li, C., & Kaplan, D. L. (2021). Functionalized 3D-printed silk-hydroxyapatite scaffolds for enhanced bone regeneration with innervation and vascularization. Biomaterials, 276, 120995.

Ge, F., Zhu, L., Yang, L., Li, W., Wei, S., Tao, Y., & Du, G. (2018). The soluble and particulate form of alginates positively regulate immune response. Iranian Journal of Immunology, 15(3), 228-238.

Georgopoulou, A., Papadogiannis, F., Batsali, A., Marakis, J., Alpantaki, K., Eliopoulos, A. G., Pontikoglou, C., & Chatzinikolaidou, M. (2018). Chitosan/gelatin scaffolds support bone regeneration. Journal of Materials Science: Materials in Medicine, 29(5), 1-13.

Hamidabadi, H. G., Shafaroudi, M. M., Seifi, M., Bojnordi, M. N., Behruzi, M., Gholipourmalekabadi, M., Shafaroudi, A. M., & Rezaei, N. (2018). Repair of critical-sized rat calvarial defects with three-dimensional hydroxyapatite-gelatin scaffolds and bone marrow stromal stem cells. Medical Archives, 72(2), 88.

Haugen, H. J., Lyngstadaas, S. P., Rossi, F., & Perale, G. (2019). Bone grafts: which is the ideal biomaterial? Journal of Clinical Periodontology, 46, 92-102.

He, B., Zhao, J., Ou, Y., & Jiang, D. (2018). Biofunctionalized peptide nanofiber-based composite scaffolds for bone regeneration. Materials Science and Engineering: C, 90, 728-738.

He, X., Liu, Y., Yuan, X., & Lu, L. (2014). Enhanced healing of rat calvarial defects with MSCs loaded on BMP-2 releasing chitosan/alginate/hydroxyapatite scaffolds. PLoS One, 9(8), e104061.

He, Y., Lin, S., Ao, Q., & He, X. (2020). The co-culture of ASCs and EPCs promotes vascularized bone regeneration in critical-sized bone defects of cranial bone in rats. Stem Cell Research & Therapy, 11(1), 1-12.

Horváthy, D. B., Vacz, G., Toro, I., Szabo, T., May, Z., Duarte, M., Hornyák, I., Szabó, B. T., Dobó-Nagy, C, Doros, A., & Lacza, Z. (2016). Remineralization of demineralized bone matrix in critical size cranial defects in rats: A 6‐month follow‐up study. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 104(7), 1336-1342.

Jahan, K., & Tabrizian, M. (2016). Composite biopolymers for bone regeneration enhancement in bony defects. Biomaterials science, 4(1), 25-39.

Jin, S., Xia, X., Huang, J., Yuan, C., Zuo, Y., Li, Y., & Li, J. (2021). Recent advances in PLGA-based biomaterials for bone tissue regeneration. Acta Biomaterialia, 127, 56-79.

Jo, Y. Y., Kim, S. G., Kwon, K. J., Kweon, H., Chae, W. S., Yang, W. G., Lee, E. y., & Seok, H. (2017). Silk fibroin-alginate-hydroxyapatite composite particles in bone tissue engineering applications in vivo. International journal of molecular sciences, 18(4), 858.

Johari, B., Ahmadzadehzarajabad, M., Azami, M., Kazemi, M., Soleimani, M., Kargozar, S., Hajighasemlou, S., Farajollahi, M. M. & Samadikuchaksaraei, A. (2016). Repair of rat critical size calvarial defect using osteoblast‐like and umbilical vein endothelial cells seeded in gelatin/hydroxyapatite scaffolds. Journal of Biomedical Materials Research Part A, 104(7), 1770-1778.

Jyoti, J., Kiran, A., Sandhu, M., Kumar, A., Singh, B. P., & Kumar, N. (2021). Improved nanomechanical and in-vitro biocompatibility of graphene oxide-carbon nanotube hydroxyapatite hybrid composites by synergistic effect. Journal of the Mechanical Behavior of Biomedical Materials, 117, 104376.

Kanda, N., Anada, T., Handa, T., Kobayashi, K., Ezoe, Y., Takahashi, T., & Suzuki, O. (2015). Orthotopic osteogenecity enhanced by a porous gelatin sponge in a critical‐sized rat calvaria defect. Macromolecular Bioscience, 15(12), 1647-1655.

Kato, E., Lemler, J., Sakurai, K., & Yamada, M. (2014). Biodegradation property of beta‐tricalcium phosphate‐collagen composite in accordance with bone formation: a comparative study with bio‐oss collagen® in a rat critical‐size defect model. Clinical implant dentistry and related research, 16(2), 202-211.

Kheiri, A., Amid, R., Kheiri, L., Namdari, M., Mojahedi, M., & Kadkhodazadeh, M. (2020). Effect of low-level laser therapy on bone regeneration of critical-size bone defects: a systematic review of in vivo studies and meta-analysis. Archives of Oral Biology, 117, 104782.

Kim, H., Hwangbo, H., Koo, Y., & Kim, G. (2020). Fabrication of mechanically reinforced gelatin/hydroxyapatite bio-composite scaffolds by core/shell nozzle printing for bone tissue engineering. International Journal of Molecular Sciences, 21(9), 3401.

Kim, R. W., Kim, J. H., & Moon, S. Y. (2016). Effect of hydroxyapatite on critical-sized defect. Maxillofacial plastic and reconstructive surgery, 38(1), 1-6.

Laird, N. Z., Acri, T. M., Chakka, J. L., Quarterman, J. C., Malkawi, W. I., Elangovan, S., & Salem, A. K. (2021). Applications of nanotechnology in 3D printed tissue engineering scaffolds. European Journal of Pharmaceutics and Biopharmaceutics, 161, 15-28.

Lappalainen, O. P., Korpi, R., Haapea, M., Korpi, J., Ylikontiola, L. P., Kallio-Pulkkinen, S., Serlo, W. S., Lehenkari, P., & Sándor, G. K. (2015). Healing of rabbit calvarial critical-sized defects using autogenous bone grafts and fibrin glue. Child's Nervous System, 31(4), 581-587.

Lee, J. H., Ryu, M. Y., Baek, H. R., Lee, K. M., Seo, J. H., & Lee, H. K. (2013). Fabrication and evaluation of porous beta-tricalcium phosphate/hydroxyapatite (60/40) composite as a bone graft extender using rat calvarial bone defect model. The Scientific World Journal, 2013,1-9.

Li, D., Li, M., Liu, P., Zhang, Y., Lu, J., & Li, J. (2014). Tissue-engineered bone constructed in a bioreactor for repairing critical-sized bone defects in sheep. International orthopaedics, 38(11), 2399-2406.

Liao, J., Li, Y., Li, H., Liu, J., Xie, Y., Wang, J., & Zhang, Y. (2018). Preparation, bioactivity and mechanism of nano-hydroxyapatite/sodium alginate/chitosan bone repair material. Journal of applied biomaterials & functional materials, 16(1), 28-35.

Ma, H., Feng, C., Chang, J., & Wu, C. (2018). 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy. Acta biomaterialia, 79, 37-59.

Mahmoud, E. M., Sayed, M., El-Kady, A. M., Elsayed, H., & Naga, S. M. (2020). In vitro and in vivo study of naturally derived alginate/hydroxyapatite bio composite scaffolds. International journal of biological macromolecules, 165, 1346-1360.

Manda, M. G., da Silva, L. P., Cerqueira, M. T., Pereira, D. R., Oliveira, M. B., Mano, J. F., Marques, A. P., Oliveira, J. M, Correlo, V.M., & Reis, R. L. (2018). Gellan gum‐hydroxyapatite composite spongy‐like hydrogels for bone tissue engineering. Journal of Biomedical Materials Research Part A, 106(2), 479-490.

Martinez-Zelaya, V. R., Zarranz, L., Herrera, E. Z., Alves, A. T., Uzeda, M. J., Mavropoulos, E., Rossi, A. L., Mello, A., Granjeiro, J. M., Calasans-Maia, M. D., & Rossi, A. M. (2019). In vitro and in vivo evaluations of nanocrystalline Zn-doped carbonated hydroxyapatite/alginate microspheres: zinc and calcium bioavailability and bone regeneration. International Journal of Nanomedicine, 14, 3471.

Meimandi-Parizi, A., Oryan, A., & Gholipour, H. (2018). Healing potential of nanohydroxyapatite, gelatin, and fibrin-platelet glue combination as tissue engineered scaffolds in radial bone defects of rats. Connective Tissue Research, 59(4), 332-344.

Miguel, F. B., Cardoso, A. K. M., Barbosa Jr, A. A., Marcantonio Jr, E., Goissis, G., & Rosa, F. P. (2006). Morphological assessment of the behavior of three‐dimensional anionic collagen matrices in bone regeneration in rats. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 78(2), 334-339.

Miguel, F. B., de Almeida Barbosa Júnior, A., de Paula, F. L., Barreto, I. C., Goissis, G., & Rosa, F. P. (2013). Regeneration of critical bone defects with anionic collagen matrix as scaffolds. Journal of Materials Science: Materials in Medicine, 24(11), 2567-2575.

Mohammadpour, M., Samadian, H., Moradi, N., Izadi, Z., Eftekhari, M., Hamidi, M., Shavandi, A., Quéro, A., Petit, E, Delattre, C., & Elboutachfaiti, R. (2021). Fabrication and Characterization of Nanocomposite Hydrogel Based on Alginate/Nano-Hydroxyapatite Loaded with Linum usitatissimum Extract as a Bone Tissue Engineering Scaffold. Marine drugs, 20(1), 20.

Moshaverinia, A., Ansari, S., Chen, C., Xu, X., Akiyama, K., Snead, M. L., ... & Shi, S. (2013). Co-encapsulation of anti-BMP2 monoclonal antibody and mesenchymal stem cells in alginate microspheres for bone tissue engineering. Biomaterials, 34(28), 6572-6579.

Neves, N., Campos, B. B., Almeida, I. F., Costa, P. C., Cabral, A. T., Barbosa, M. A., & Ribeiro, C. C. (2016). Strontium-rich injectable hybrid system for bone regeneration. Materials Science and Engineering: C, 59, 818-827.

Oryan, A., Alidadi, S., Bigham-Sadegh, A., & Moshiri, A. (2016). Comparative study on the role of gelatin, chitosan and their combination as tissue engineered scaffolds on healing and regeneration of critical sized bone defects: an in vivo study. Journal of Materials Science: Materials in Medicine, 27(10), 1-14.

Oryan, A., Baghaban Eslaminejad, M., Kamali, A., Hosseini, S., Sayahpour, F. A., & Baharvand, H. (2019). Synergistic effect of strontium, bioactive glass and nano‐hydroxyapatite promotes bone regeneration of critical‐sized radial bone defects. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 107(1), 50-64.

Perić Kačarević, Ž., Rider, P., Alkildani, S., Retnasingh, S., Pejakić, M., Schnettler, R., Gosau, M., Smeets, R., Jung, O., & Barbeck, M. (2020). An introduction to bone tissue engineering. The International Journal of Artificial Organs, 43(2), 69-86.

Ranganathan, S., Balagangadharan, K., & Selvamurugan, N. (2019). Chitosan and gelatin-based electrospun fibers for bone tissue engineering. International journal of biological macromolecules, 133, 354-364.

Ribeiro, I. Í. D. A., Almeida, R. D. S., Rocha, D. N. D., Silva, M. H. P. D., Miguel, F. B., & Rosa, F. P. (2014). Biocerâmicas e polímero para a regeneração de defeitos ósseos críticos. Revista De Ciências Médicas E Biológicas, 13(3), 298–302.

Roseti, L., Parisi, V., Petretta, M., Cavallo, C., Desando, G., Bartolotti, I., & Grigolo, B. (2017). Scaffolds for bone tissue engineering: state of the art and new perspectives. Materials Science and Engineering: C, 78, 1246-1262.

Rossi, A. L., Barreto, I. C., Maciel, W. Q., Rosa, F. P., Rocha-Leão, M. H., Werckmann, J., Rossi, A. M., Borojevica, R., & Farina, M. (2012). Ultrastructure of regenerated bone mineral surrounding hydroxyapatite–alginate composite and sintered hydroxyapatite. Bone, 50(1), 301-310.

Saltz, A., & Kandalam, U. (2016). Mesenchymal stem cells and alginate microcarriers for craniofacial bone tissue engineering: A review. Journal of biomedical materials research Part A, 104(5), 1276-1284.

Santana, W. M. D., Sousa, D. N. D., Ferreira, V. M., & Duarte, W. R. (2016). Simvastatin and biphasic calcium phosphate affects bone formation in critical-sized rat calvarial defects. Acta Cirúrgica Brasileira, 31, 300-307.

Santos, G. G. D., Vasconcelos, L. Q., Poy, S. C. D. S., Almeida, R. D. S., Barbosa, A. D. A., Santos, S. R. D. A., Rossi, A. M., Miguel, F. B., & Rosa, F. P. (2019). Influence of the geometry of nanostructured hydroxyapatite and alginate composites in the initial phase of bone repair. Acta Cirúrgica Brasileira, 34 (02) 1- 11.

Santos, G. G., Miguel, I. R. J. B., Junior, A. D. A. B., Barbosa, W. T., de Almeida, K. V., García-Carrodeguas, R., Fook, M. L., Rodríguez, M. A., Miguel, F. B., Araújo, R. P. C., & Rosa, F. P. (2021). Bone regeneration using Wollastonite/β-TCP scaffolds implants in critical bone defect in rat calvaria. Biomedical Physics & Engineering Express, 7(5), 055015.

Santos, G. G., Nunes, V. L. C., Marinho, S. M. O. C., Santos, S. R. A., Rossi, A. M., & Miguel, F. B. (2020). Biological behavior of magnesium-substituted hydroxyapatite during bone repair. Brazilian journal of biology, 81, 53-61.

Sarker, A., Amirian, J., Min, Y. K., & Lee, B. T. (2015). HAp granules encapsulated oxidized alginate–gelatin–biphasic calcium phosphate hydrogel for bone regeneration. International journal of biological macromolecules, 81, 898-911.

Schmitz, J. P., & Hollinger, J. O. (1986). The critical size defect as an experimental model for craniomandibulofacial nonunions. Clinical Orthopaedics and Related Research (1976-2007), 205, 299-308.

Shi, D., Shen, J., Zhang, Z., Shi, C., Chen, M., Gu, Y., & Liu, Y. (2019). Preparation and properties of dopamine‐modified alginate/chitosan–hydroxyapatite scaffolds with gradient structure for bone tissue engineering. Journal of Biomedical Materials Research Part A, 107(8), 1615-1627.

Song, T., Zhao, F., Wang, Y., Li, D., Lei, N., Li, X., Xiao, Y., & Zhang, X. (2021). Constructing a biomimetic nanocomposite with the in situ deposition of spherical hydroxyapatite nanoparticles to induce bone regeneration. Journal of Materials Chemistry B, 9(10), 2469-2482.

Song, Y., Wu, H., Gao, Y., Li, J., Lin, K., Liu, B., Lei, X., Cheng, P., Zhang, S., Wang, Y., Sun, J., Bi, L., & Pei, G. (2020). Zinc silicate/nano-hydroxyapatite/collagen scaffolds promote angiogenesis and bone regeneration via the p38 MAPK pathway in activated monocytes. ACS Applied Materials & Interfaces, 12(14), 16058-16075.

Soundarya, S. P., Menon, A. H., Chandran, S. V., & Selvamurugan, N. (2018). Bone tissue engineering: Scaffold preparation using chitosan and other biomaterials with different design and fabrication techniques. International journal of biological macromolecules, 119, 1228-1239.

Spicer, P. P., Kretlow, J. D., Young, S., Jansen, J. A., Kasper, F. K., & Mikos, A. G. (2012). Evaluation of bone regeneration using the rat critical size calvarial defect. Nature protocols, 7(10), 1918-1929.

Stagnaro, P., Schizzi, I., Utzeri, R., Marsano, E., & Castellano, M. (2018). Alginate-polymethacrylate hybrid hydrogels for potential osteochondral tissue regeneration. Carbohydrate polymers, 185, 56-62.

Su, K., & Wang, C. (2015). Recent advances in the use of gelatin in biomedical research. Biotechnology letters, 37(11), 2139-2145.

Szurkowska, K., Kazimierczak, P., & Kolmas, J. (2021). Mg, Si—Co-Substituted Hydroxyapatite/Alginate Composite Beads Loaded with Raloxifene for Potential Use in Bone Tissue Regeneration. International Journal of Molecular Sciences, 22(6), 2933.

Thomas, A., & Bera, J. (2019). Preparation and characterization of gelatin-bioactive glass ceramic scaffolds for bone tissue engineering. Journal of Biomaterials Science, Polymer Edition, 30(7), 561-579.

Tong, Z., Chen, Y., Liu, Y., Tong, L., Chu, J., Xiao, K., Zhou, Z., Dong, W., & Chu, X. (2017). Preparation, characterization and properties of alginate/poly (γ-glutamic acid) composite microparticles. Marine drugs, 15(4), 91.

Venkatesan, J., Bhatnagar, I., Manivasagan, P., Kang, K. H., & Kim, S. K. (2015). Alginate composites for bone tissue engineering: A review. International journal of biological macromolecules, 72, 269-281.

Wang, Q., Xia, Q., Wu, Y., Zhang, X., Wen, F., Chen, X., Zhang, S., Heng, B. C., He, Y., & Ouyang, H. W. (2015). 3D‐printed atsttrin‐incorporated alginate/hydroxyapatite scaffold promotes bone defect regeneration with TNF/TNFR signaling involvement. Advanced healthcare materials, 4(11), 1701-1708.

Yin, B., Ma, P., Chen, J., Wang, H., Wu, G., Li, B., Li, Q., Huang, Z., Qiu, G., & Wu, Z. (2016). Hybrid macro-porous titanium ornamented by degradable 3D Gel/nHA micro-scaffolds for bone tissue regeneration. International Journal of Molecular Sciences, 17(4), 575.

Yu, W., Jiang, G., Liu, D., Li, L., Tong, Z., Yao, J., & Kong, X. (2017). Transdermal delivery of insulin with bioceramic composite microneedles fabricated by gelatin and hydroxyapatite. Materials Science and Engineering: C, 73, 425-428.

Zheng, A., Cao, L., Liu, Y., Wu, J., Zeng, D., Hu, L., Zhang, X., & Jiang, X. (2018). Biocompatible silk/calcium silicate/sodium alginate composite scaffolds for bone tissue engineering. Carbohydrate polymers, 199, 244-255.

Descargas

Publicado

03/03/2023

Cómo citar

SANTOS, A. C. dos .; SANTOS, G. G. dos .; MIGUEL, F. B. .; CIRELLI, J. A. .; ROSA, F. P. . Compuestos de hidroxiapatita, alginato y gelatina utilizados para la regeneración ósea: una revisión sistemática. Research, Society and Development, [S. l.], v. 12, n. 3, p. e14112340566, 2023. DOI: 10.33448/rsd-v12i3.40566. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/40566. Acesso em: 10 ene. 2025.

Número

Sección

Revisiones