Actividad antibacteriana de membranas de PVA impregnadas con quitosano y óxido de zinc
DOI:
https://doi.org/10.33448/rsd-v12i3.40720Palabras clave:
Membranas; Biomateriales; Superficies e interfaces; Mezclas.Resumen
El desarrollo de alternativas a los antibióticos convencionales contra las superbacterias representa un paso importante para evitar la creciente resistencia de las bacterias observada en los tratamientos convencionales. En esta invención, se evaluó la influencia de diferentes combinaciones de dos componentes antibacterianos activos (quitosano y óxido de zinc) y una base de alcohol polivinílico (PVA) en membranas producidas por la técnica de evaporación de disolvente. Estos sistemas se evaluaron en términos de inactivación de biopelículas, ensayos de tiempo de muerte y halos de inhibición contra S. aureus (ATCC 25923) en membranas que deben liberar componentes reactivos preservando su integridad y favoreciendo la generación de especies reactivas para mejorar la actividad antibacteriana. Los resultados sugieren el potencial de la combinación de quitosano, óxido de zinc y alcohol polivinílico para inhibir el crecimiento de S. aureus, ya que el PVA mejoró la dispersión de los componentes, mientras que el quelato de quitosano-ZnO mejora la actividad mutua del óxido metálico y el polímero natural.
Citas
Abdeen, Z. I., El Farargy, A. F., & Negm, N. A. (2018). Nanocomposite framework of chitosan/polyvinyl alcohol/ZnO: Preparation, characterization, swelling and antimicrobial evaluation. Journal of Molecular Liquids, 250, 335–343. https://doi.org/https://doi.org/10.1016/j.molliq.2017.12.032
Abureesh, M. A., Oladipo, A. A., Mizwari, Z. M., & Berksel, E. (2018). Engineered mixed oxide-based polymeric composites for enhanced antimicrobial activity and sustained release of antiretroviral drug. International Journal of Biological Macromolecules, 116, 417–425. https://doi.org/10.1016/J.IJBIOMAC.2018.05.065
Ahmad Yusof, N. A., Mat Zain, N., & Pauzi, N. (2019). Synthesis of Chitosan/Zinc Oxide Nanoparticles Stabilized by Chitosan via Microwave Heating. Bulletin of Chemical Reaction Engineering & Catalysis, 14(2), 450. https://doi.org/10.9767/bcrec.14.2.3319.450-458
Aslam, M., Kalyar, M. A., & Raza, Z. A. (2018). Investigation of Zinc Oxide-Loaded Poly(Vinyl Alcohol) Nanocomposite Films in Tailoring Their Structural, Optical and Mechanical Properties. Journal of Electronic Materials, 47(7), 3912–3926. https://doi.org/10.1007/s11664-018-6270-1
Aslam, M., Kalyar, M. A., & Raza, Z. A. (2019). Effect of Separate Zinc, Copper and Graphene Oxides Nanofillers on Electrical Properties of PVA Based Composite Strips. Journal of Electronic Materials, 48(2), 1116–1121. https://doi.org/10.1007/s11664-018-6793-5
Aslam, M., Kalyar, M. A., & Raza, Z. A. (2021). Fabrication of nano-CuO-loaded PVA composite films with enhanced optomechanical properties. Polymer Bulletin, 78(3), 1551–1571. https://doi.org/10.1007/s00289-020-03173-9
Aslam, M., Raza, Z. A., & Siddique, A. (2021). Fabrication and chemo-physical characterization of CuO/chitosan nanocomposite-mediated tricomponent PVA films. Polymer Bulletin, 78(4), 1955–1965. https://doi.org/10.1007/s00289-020-03194-4
Ayub, A., & Raza, Z. A. (2021). Arsenic removal approaches: A focus on chitosan biosorption to conserve the water sources. International Journal of Biological Macromolecules, 192, 1196–1216. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2021.10.050
Ayub, A., Raza, Z. A., Majeed, M. I., Tariq, M. R., & Irfan, A. (2020). Development of sustainable magnetic chitosan biosorbent beads for kinetic remediation of arsenic contaminated water. International Journal of Biological Macromolecules, 163, 603–617. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2020.06.287
Barreto, M. S. R., Andrade, C. T., Azero, E. G., Paschoalin, V. M. F., & Del Aguila, E. M. (2017). Production of chitosan/zinc oxide complex by ultrasonic treatment with antibacterial activity. Journal of Bacteriology & Parasitology, 8(5), 1–7. https://doi.org/10.4172/2155-9597.1000330
Bhattacharjee, B., Ghosh, S., Mukherjee, R., & Haldar, J. (2021). Quaternary lipophilic chitosan and gelatin cross-linked antibacterial hydrogel effectively kills multidrug-resistant bacteria with minimal toxicity toward mammalian cells. Biomacromolecules, 22(2), 557–571. https://doi.org/10.1021/acs.biomac.0c01420
Bhattacharya, M., Wozniak, D. J., Stoodley, P., & Hall-Stoodley, L. (2015). Prevention and treatment of Staphylococcus aureus biofilms. Expert Review of Anti-Infective Therapy, 13(12), 1499–1516. https://doi.org/10.1586/14787210.2015.1100533
Bobu, E., Nicu, R., Lupei, M., Ciolacu, F., & Desbrieres, J. (2011). Synthesis and characterization of n-alkyl chitosan for papermaking applications. Cellulose Chemistry and Technology, 45, 619–625.
Brandt, S. L., Putnam, N. E., Cassat, J. E., & Serezani, C. H. (2018). Innate immunity to Staphylococcus aureus: Evolving paradigms in soft tissue and invasive infections. The Journal of Immunology, 200(12), 3871–3880. https://doi.org/10.4049/jimmunol.1701574
Burnham, J. P., & Kollef, M. H. (2018). Treatment of severe skin and soft tissue infections: A review. Current Opinion in Infectious Diseases, 31(2), 113–119. https://doi.org/10.1097/QCO.0000000000000431
Ciciliati, M. A., Silva, M. F., Fernandes, D. M., Melo, M. A. C., Hechenleitner, A. A. W., & Pineda, E. A. G. (2015). Fe-doped ZnO nanoparticles: synthesis by a modified sol–gel method and characterization. Materials Letters, 159, 84–86. https://doi.org/10.1016/J.MATLET.2015.06.023
Cuero, R. G., Osuji, G., & Washington, A. (1991). N-carboxymethylchitosan inhibition of aflatoxin production: Role of zinc. Biotechnology Letters, 13(6), 441–444. https://doi.org/10.1007/BF01030998
Dadi, R., Azouani, R., Traore, M., Mielcarek, C., & Kanaev, A. (2019). Antibacterial activity of ZnO and CuO nanoparticles against gram positive and gram negative strains. Materials Science and Engineering C, 104, 109968. https://doi.org/10.1016/j.msec.2019.109968
Delgadillo-Armendariz, N. L., Rangel-Vazquez, N. A., Marquez-Brazon, E. A., & Gascue, B. R.-D. (2014). Interactions of chitosan/genipin hydrogels during drug delivery: A QSPR APPROACH. Química Nova, 37, 1503–1509. https://doi.org/10.5935/0100-4042.20140243
Dharmaraj, D., Krishnamoorthy, M., Rajendran, K., Karuppiah, K., Annamalai, J., Durairaj, K. R., Santhiyagu, P., & Ethiraj, K. (2021). Antibacterial and cytotoxicity activities of biosynthesized silver oxide (Ag2O) nanoparticles using Bacillus paramycoides. Journal of Drug Delivery Science and Technology, 61, 102111. https://doi.org/10.1016/j.jddst.2020.102111
Djurišić, A. B., Leung, Y. H., Ng, A. M. C., Xu, X. Y., Lee, P. K. H., Degger, N., & Wu, R. S. S. (2015). Toxicity of metal oxide nanoparticles: Mechanisms, characterization, and avoiding experimental artefacts. Small, 11(1), 26–44. https://doi.org/10.1002/smll.201303947
Fahmy, A., Kamoun, E. A., El-Eisawy, R., El-Fakharany, E. M., Taha, T. H., El-Damhougy, B. K., & Abdelhai, F. (2015). Poly(vinyl alcohol)-hyaluronic Acid Membranes for Wound Dressing Applications: Synthesis and in vitro Bio-Evaluations. Journal of the Brazilian Chemical Society, 26, 1466–1474. https://doi.org/10.5935/0103-5053.20150115
Feng, B.-H., & Peng, L.-F. (2012). Synthesis and characterization of carboxymethyl chitosan carrying ricinoleic functions as an emulsifier for azadirachtin. Carbohydrate Polymers, 88(2), 576–582. https://doi.org/https://doi.org/10.1016/j.carbpol.2012.01.002
Gavalyan, V. B. (2016). Synthesis and characterization of new chitosan-based Schiff base compounds. Carbohydrate Polymers, 145, 37–47. https://doi.org/https://doi.org/10.1016/j.carbpol.2016.02.076
Godoy-Gallardo, M., Eckhard, U., Delgado, L. M., Puente, YJ. D. R., Hoyos-Nogués, M., Gil, F. J., & Perez, R. A. (2021). Antibacterial approaches in tissue engineering using metal ions and nanoparticles: from mechanisms to applications. Bioactive Materials, 6(12), 4470–4490. https://doi.org/10.1016/j.bioactmat.2021.04.033
Gudkov, S. V, Burmistrov, D. E., Serov, D. A., Rebezov, M. B., Semenova, A. A., & Lisitsyn, A. B. (2021). A Mini Review of Antibacterial Properties of ZnO Nanoparticles. Frontiers in Physics, 9, 641181. https://doi.org/10.3389/fphy.2021.641481
Hajizadeh, H., Peighambardoust, S. J., Peighambardoust, S. H., & Peressini, D. (2020). Physical, mechanical, and antibacterial characteristics of bio-nanocomposite films loaded with Ag-modified SiO2 and TiO2 nanoparticles. Journal of Food Science, 85(4), 1193–1202. https://doi.org/10.1111/1750-3841.15079
Hemmati, F., Salehi, R., Ghotaslou, R., Kafil, H. S., Hasani, A., Gholizadeh, P., & Rezaee, M. A. (2020). The assessment of antibiofilm activity of chitosan-zinc oxide-gentamicin nanocomposite on Pseudomonas aeruginosa and Staphylococcus aureus. International Journal of Biological Macromolecules, 163, 2248–2258. https://doi.org/10.1016/J.IJBIOMAC.2020.09.037
Inbaraj, B. S., Chen, B. Y., Liao, C. W., & Chen, B. H. (2020). Green synthesis, characterization and evaluation of catalytic and antibacterial activities of chitosan, glycol chitosan and poly(γ-glutamic acid) capped gold nanoparticles. International Journal of Biological Macromolecules, 161, 1484–1495. https://doi.org/10.1016/j.ijbiomac.2020.07.244
Jiang, J., Pi, J., & Cai, J. (2018). The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorganic Chemistry and Applications, 2018, 1062562. https://doi.org/10.1155/2018/1062562
Kadiyala, U., Turali-Emre, E. S., Bahng, J. H., Kotov, N. A., Scott Vanepps, J., & VanEpps, J. S. (2018). Unexpected insights into antibacterial activity of zinc oxide nanoparticles against methicillin resistant: Staphylococcus aureus (MRSA). Nanoscale, 10(10), 4927–4939. https://doi.org/10.1039/c7nr08499d
Kajbafvala, A., Zanganeh, S., Kajbafvala, E., Zargar, H. R., Bayati, M. R., & Sadrnezhaad, S. K. (2010). Microwave-assisted synthesis of narcis-like zinc oxide nanostructures. Journal of Alloys and Compounds, 497(1–2), 325–329. https://doi.org/10.1016/J.JALLCOM.2010.03.057
Kamoun, E. A., Kenawy, E.-R. S., Tamer, T. M., El-Meligy, M. A., & Mohy Eldin, M. S. (2015). Poly (vinyl alcohol)-alginate physically crosslinked hydrogel membranes for wound dressing applications: Characterization and bio-evaluation. Arabian Journal of Chemistry, 8(1), 38–47. https://doi.org/https://doi.org/10.1016/j.arabjc.2013.12.003
Karthikeyan, C., Varaprasad, K., Akbari-Fakhrabadi, A., Hameed, A. S. H., & Sadiku, R. (2020). Biomolecule chitosan, curcumin and ZnO-based antibacterial nanomaterial, via a one-pot process. Carbohydrate Polymers, 249, 116825. https://doi.org/https://doi.org/10.1016/j.carbpol.2020.116825
Khalilipour, A., & Paydayesh, A. (2019). Characterization of Polyvinyl Alcohol/ZnO Nanocomposite Hydrogels for Wound Dressings. Journal of Macromolecular Science, Part B, 58(2), 371–384. https://doi.org/10.1080/00222348.2018.1560936
Khan, M. F., Ansari, A. H., Hameedullah, M., Ahmad, E., Husain, F. M., Zia, Q., Baig, U., Zaheer, M. R., Alam, M. M., Khan, A. M., AlOthman, Z. A., Ahmad, I., Ashraf, G. M., & Aliev, G. (2016). Sol-gel synthesis of thorn-like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: Potential role as nano-antibiotics. Scientific Reports, 6(1), 27689. https://doi.org/10.1038/srep27689
Kotov, N. A. (2010). Inorganic nanoparticles as protein mimics. Science, 330(6001), 188–189. https://doi.org/10.1126/science.1190094
Krishnaveni, R., & Thambidurai, S. (2013). Industrial method of cotton fabric finishing with chitosan-ZnO composite for anti-bacterial and thermal stability. Industrial Crops and Products, 47, 160–167. https://doi.org/10.1016/j.indcrop.2013.03.007
Lemire, J. A., Harrison, J. J., & Turner, R. J. (2013). Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nature Reviews Microbiology, 11(6), 371–384. https://doi.org/10.1038/nrmicro3028
Li, L.-H., Deng, J.-C., Deng, H.-R., Liu, Z.-L., & Xin, L. (2010). Synthesis and characterization of chitosan/ZnO nanoparticle composite membranes. Carbohydrate Research, 345(8), 994–998. https://doi.org/https://doi.org/10.1016/j.carres.2010.03.019
Ma, Z., Garrido-Maestu, A., & Jeong, K. C. (2017). Application, mode of action, and in vivo activity of chitosan and its micro- and nanoparticles as antimicrobial agents: A review. Carbohydrate Polymers, 176, 257–265. https://doi.org/10.1016/j.carbpol.2017.08.082
Maji, J., Pandey, S., & Basu, S. (2020). Synthesis and evaluation of antibacterial properties of magnesium oxide nanoparticles. Bulletin of Materials Science, 43(1), 1–10. https://doi.org/10.1007/s12034-019-1963-5
McDevitt, C. A., Ogunniyi, A. D., Valkov, E., Lawrence, M. C., Kobe, B., McEwan, A. G., & Paton, J. C. (2011). A Molecular Mechanism for Bacterial Susceptibility to Zinc. PLOS Pathogens, 7(11), e1002357.
Milionis, A., Tripathy, A., Donati, M., Sharma, C. S., Pan, F., Maniura-Weber, K., Ren, Q., & Poulikakos, D. (2020). Water-Based Scalable Methods for Self-Cleaning Antibacterial ZnO-Nanostructured Surfaces. Industrial and Engineering Chemistry Research, 59(32), 14323–14333. https://doi.org/10.1021/acs.iecr.0c01998
Moeini, A., Pedram, P., Makvandi, P., Malinconico, M., & D’Ayala, G. G. (2020). Wound healing and antimicrobial effect of active secondary metabolites in chitosan-based wound dressings: A review. Carbohydrate Polymers, 233, 115839. https://doi.org/10.1016/j.carbpol.2020.115839
Mushtaq, F., Nazeer, M. A., Mansha, A., Zahid, M., Bhatti, H. N., Raza, Z. A., Yaseen, W., Rafique, A., & Irshad, R. (2022). Poly(Vinyl Alcohol) (PVA)-Based Treatment Technologies in the Remediation of Dye-Containing Textile Wastewater BT - Polymer Technology in Dye-containing Wastewater: Volume 2 (A. Khadir & S. S. Muthu, Eds.; pp. 1–21). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-0886-6_1
Nasu, A., & Otsubo, Y. (2006). Rheology and UV protection properties of suspensions of fine titanium dioxides in a silicone oil. Journal of Colloid and Interface Science, 296(2), 558–564. https://doi.org/10.1016/j.jcis.2005.09.036
Ngah, W. S. W., Teong, L. C., & Hanafiah, M. A. K. M. (2011). Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydrate Polymers, 83(4), 1446–1456. https://doi.org/10.1016/J.CARBPOL.2010.11.004
Niño-Martínez, N., Oroco, M. F. S., Martínez-Castañón, G. A., Méndez, F. T., & Ruiz, F. (2019). Molecular mechanisms of bacterial resistance to metal and metal oxide nanoparticles. International Journal of Molecular Sciences, 20(11), 2808. https://doi.org/10.3390/ijms20112808
Paul, S., Jayan, A., Sasikumar, C. S., & Cherian, S. M. (2014). Extraction and Purification of Chitosan from Chitin Isolated from Sea Prawn (Fenneropenaeus indicus). Asian Journal of Pharmaceutical and Clinical Research, 7(4), 201–204.
Perelshtein, I., Ruderman, E., Perkas, N., Tzanov, T., Beddow, J., Joyce, E., Mason, T. J., Blanes, M., Mollá, K., Patlolla, A., Frenkel, A. I., & Gedanken, A. (2013). Chitosan and chitosan–ZnO-based complex nanoparticles: formation, characterization, and antibacterial activity. Journal of Materials Chemistry B, 1(14), 1968–1976. https://doi.org/10.1039/C3TB00555K
Qi, K., Cheng, B., Yu, J., & Ho, W. (2017). Review on the improvement of the photocatalytic and antibacterial activities of ZnO. Journal of Alloys and Compounds, 727, 792–820. https://doi.org/10.1016/j.jallcom.2017.08.142
Rac-Rumijowska, O., Fiedot, M., Suchorska-Wozniak, P., & Teterycz, H. (2017). Synthesis of gold nanoparticles with different kinds of stabilizing agents. Proceedings of the International Spring Seminar on Electronics Technology, 2017, 1–6. https://doi.org/10.1109/ISSE.2017.8000972
Raza, Z. A., Khalil, S., Ayub, A., & Banat, I. M. (2020). Recent developments in chitosan encapsulation of various active ingredients for multifunctional applications. Carbohydrate Research, 492, 108004. https://doi.org/https://doi.org/10.1016/j.carres.2020.108004
Reddy, K. M., Feris, K., Bell, J., Wingett, D. G., Hanley, C., & Punnoose, A. (2007). Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Applied Physics Letters, 90(213902), 2139021–2139023. https://doi.org/10.1063/1.2742324
Sahariah, P., Gaware, V. S., Lieder, R., Jónsdóttir, S., Hjálmarsdóttir, M. A., Sigurjonsson, O. E., & Másson, M. (2014). The effect of substituent, degree of acetylation and positioning of the cationic charge on the antibacterial activity of quaternary chitosan derivatives. Marine Drugs, 12(8), 4635–4658. https://doi.org/10.3390/MD12084635
Singh, P., Kumar, R., & Singh, R. K. (2019). Progress on Transition Metal-Doped ZnO Nanoparticles and Its Application. Industrial and Engineering Chemistry Research, 58(37), 17130–17163. https://doi.org/10.1021/acs.iecr.9b01561
Soren, S., Kumar, S., Mishra, S., Jena, P. K., Verma, S. K., & Parhi, P. (2018). Evaluation of antibacterial and antioxidant potential of the zinc oxide nanoparticles synthesized by aqueous and polyol method. Microbial Pathogenesis, 119, 145–151.
Souza, R. C., Haberbeck, L. U., Riella, H. G., Ribeiro, D. H. B., & Carciofi, B. A. M. (2019). Antibacterial activity of zinc oxide nanoparticles synthesized by solochemical process. Brazilian Journal of Chemical Engineering, 36(2), 885–893. https://doi.org/10.1590/0104-6632.20190362S20180027
Wang, Y., Tan, X., Xi, C., & Phillips, K. S. (2018). Removal of Staphylococcus aureus from skin using a combination antibiofilm approach. Npj Biofilms and Microbiomes, 4(1), 16. https://doi.org/10.1038/s41522-018-0060-7
Xia, J., Zhang, H., Yu, F., Pei, Y., & Luo, X. (2020). Superclear, Porous Cellulose Membranes with Chitosan-Coated Nanofibers for Visualized Cutaneous Wound Healing Dressing. ACS Applied Materials and Interfaces, 12(21), 24370–24379. https://doi.org/10.1021/acsami.0c05604
Zhong, Q., Tian, J., Liu, T., Guo, Z., Ding, S., & Li, H. (2018). Preparation and antibacterial properties of carboxymethyl chitosan/ZnO nanocomposite microspheres with enhanced biocompatibility. Materials Letters, 212, 58–61. https://doi.org/10.1016/J.MATLET.2017.10.062
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Edmo Henrique Martins Cavalcante; Fernando Antônio Gomes da Silva Junior; Monica Aparecida Tomé Pereira; Paulo José Pereira; Mateus Matiuzzi da Costa; Helinando Pequeno de Oliveira
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.