Análisis de Métricas de Rendimiento en Ambiente de Intrusiones en Redes IEEE 802.11 con Machine Learning en Hospital N.S.C.
DOI:
https://doi.org/10.33448/rsd-v12i4.41277Palabras clave:
Amenazas; Calidad; Evidencias.Resumen
La seguridad presente en las redes IEEE 802.11 cobra cada día más relevancia. Sin embargo, la seguridad en la red IEEE 802.11 no ha seguido el ritmo de las amenazas de tanta importancia. Por tal motivo surge la propuesta de diseñar un Sistema de Detección de Intrusos-IDS basado en machine learning que podrá tener autoperfeccionamiento, ya que creará un entorno seguro, capaz de detectar todas las amenazas encubiertas, Deauthentication, EAPOL-Logoff y Beacon Flood, donde se lanzaron en una red corporativa real. Con esto, correlacionó las métricas de desempeño, y entre ellas, la que valora la calidad de la clasificación, el Coeficiente de Correlación de Matthews. La anomalía Deauthentication arriba del clasificador Naive Bayes se obtuvo (88,71%), mientras que el valor de calidad del clasificador Logistic Regression (Logistic) se igualó a (88,69%), y sin embargo, el J48 presentó un valor menor de (88,47%). A pesar de esto, la identificación del ataque Beacon Flood se debió a que el algoritmo Naive Bayes mostró la tasa de detección más alta (100,00%), seguido de Logistic (99,95%) y J48 con el valor más bajo (98,85%). Como resultado, en la detección de la anomalía EAPOL-Logoff, las clasificaciones presentaron similitud de (100,00%) y las demás, con la presentación de una detección, por datos no anómalos (Normal), el Naive Bayes se vio afectado por (89,92%), seguido de Logistic de mantenimiento (89,89%), mientras que J48 se probó con una tasa más baja (89,67%). Con el estudio se evidencia la posibilidad de que sea posible desarrollar un sistema de detección de intrusos basado en redes wireless.
Citas
Abracadabra (2018). Micro- and Macro-average of Precision, Recall and F-Score. Website Tomaxent. https://tomaxent.com/2018/04/27/Micro-and-Macro-average-of-Precision-Recall-and-F-Score/.
Aggarwal C. C. (2014). Data Classification: Algorithms and Applications. Chapman & Hall/CRC.
Ahmad, M. S., & Tadakamadla, S. (2011). Short Paper: Security Evaluation of IEEE 802.11w Specification. In Proceedings of the Fourth ACM Conference on Wireless Network Security.Association for Computing Machinery, 53–58. http://dx.doi.org/10.1145/1998412.1998424.
Aircrack-ng. AIRCRACK-NG(2022). http://www.aircrack-ng.org/doku.php.
Aminanto, M. E., Wicaksono, R. S. H., Aminanto, A. E., Tanuwidjaja, H. C., Yola, L., & Kim, K. (2022). Multi-Class Intrusion Detection Using Two-Channel Color Mapping in IEEE 802.11 Wireless Network. IEEE Access, 10, 36791–36801. https://doi.org/10.1109/ACCESS.2022.3164104.
Arasaki, A. M. & Della Flora, J. C. L. (2012). Teste de intrusão em redes sem fio padrão 802.11. 63p. Monografia - Curso de Pós-Graduação em Redes de Computadores e Segurança de Dados. Centro Universitário Filadélfia de Londrina - UniFil, Londrina.
Barford, P., Kline, J., Plonka, D., & Ron, A. (2002). A Signal Analysis of Network Traffic Anomalies. In Proceedings of the 2nd ACM SIGCOMM Workshop on Internet Measurment. Association for Computing Machinery, 71–82. https://doi.org/10.1145/637201.637210.
Cessie, S. L., & Houwelingen, J. C. V. (1992). Ridge Estimators in Logistic Regression. Journal of the Royal Statistical Society. Series C (Applied Statistics), 41(1), 191–201.http://dx.doi.org/10.2307/2347628.
Feng, P. (2012). Wireless LAN security issues and solutions. In 2012 IEEE Symposium on Robotics and Applications (ISRA), 921–924. https://doi.org/10.1109/ISRA.2012.6219343.
IEEE Standard for Information Technology- Telecommunications and Information Exchange Between Systems- Local and Metropolitan Area Networks- Specific Requirements- Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. (2003). ANSI/IEEE Std 802.11, 1999 Edition (R2003), i-513. https://doi.org/10.1109/IEEESTD.2003.95617.
IEEE Standard for Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 4: Protected Management Frames. (2009). IEEE Std 802.11w-2009 (Amendment to IEEE Std 802.11-2007 as amended by IEEE Std 802.11k-2008, IEEE Std 802.11r-2008, and IEEE Std 802.11y-2008), 1–111.https://doi.org/10.1109/IEEESTD.2009.5278657.
IEEE Standard for information technology-Telecommunications and information exchange between systems-Local and metropolitan area networks-Specific requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Amendment 6: Medium Access Control (MAC) Security Enhancements. (2004). IEEE Std 802.11i-2004, 1–190. https://doi.org/10.1109/IEEESTD.2004.94585.
Java (2022). Java. https://www.java.com.
John, G. H., & Langley, P. (1995). Estimating Continuous Distributions in Bayesian Classifiers. In Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers Inc. 338–345. https://dl.acm.org/doi/10.5555/2074158.2074196.
Linhares, A.G., & Gonçalves, P. A. da S. (2012). Uma análise dos mecanismos de segurança de redes IEEE 802.11: WEP, WPA, WPA2 e IEEE 802.11 w. 1-10. https://www.cin.ufpe.br/~pasg/gpublications/LiGo06.pdf.
Liu, Y., Cheng, J., Yan, C., Wu, X., & Chen, F. (2015b). Research on the Matthews Correlation Coefficients Metrics of Personalized Recommendation Algorithm Evaluation. International Journal of Hybrid Information Technology, 8(1), 163–172. https://gvpress.com/journals/IJHIT/vol8_no1/14.pdf.
Mdk3. Penetration Testing Tools. (2022). https://en.kali.tools/?p=34.
Mitchell, T. (1997). Machine Learning (Mcgraw-Hill International Edit). McGraw-Hill Education (ISE Editions).
Morimoto, C. E. (2008). Redes, Guia Prático. Sul Editores.
Patil, B., & Agarkhed, J. (2020). An Exploratory Machine Learning Technique for Investigating Intrusion in Wireless Sensor Networks. In 2020 IEEE Bangalore Humanitarian Technology Conference (B-HTC), 1–6. https://doi.org/10.1109/B-HTC50970.2020.9297969.
Qin, Y., Li, B., Yang, M., & Yan, Z. (2018). Attack Detection for Wireless Enterprise Network: a Machine Learning Approach. In 2018 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), 1–6. https://doi.org/10.1109/ICSPCC.2018.8567797.
Quincozes, S. E., & Kazienko, J. F. (2020). Machine Learning Methods Assessment for Denial of Service Detection in Wireless Sensor Networks. In 2020 IEEE 6th World Forum on Internet of Things (WF-IoT), 1–6. https://doi.org/10.1109/WF-IoT48130.2020.9221146.
Quinlan, J. (1995). MDL and Categorical Theories (Continued). In A. Prieditis & S. Russell (Eds.), Machine Learning Proceedings 1995. Morgan Kaufmann. 464–470.
Ravipati, R. D., & Abualkibash, M. (2019). Intrusion Detection System Classification Using Different Machine Learning Algorithms on KDD-99 and NSL-KDD Datasets - A Review Paper. SSRN Electronic Journal, 11(3),1-16. http://dx.doi.org/10.2139/ssrn.3428211.
Scarfone, K. A., & Mell, P. M. (2007). Guide to Intrusion Detection and Prevention Systems (IDPS). National Institute of Standards and Technology, 800-94.
Tarca, A. L., Carey, V. J., Chen, X.-w., Romero, R., & Drăghici, S. (2007). Machine Learning and Its Applications to Biology. PLoS Computational Biology, 3(6), e116.
Tews, E. (2007). Attacks on the WEP Protocol. Cryptology ePrint Archive, 471, 1-125. https://eprint.iacr.org/2007/471.pdf.
Wi-Fi Alliance (2003). Wi-Fi Protected Access: Strong, Standards-based, Interoperable Security for Today’s Wi-Fi Networks. https://www.cs.kau.se/cs/education/courses/dvad02/p1/Papers%20Wireless/Wi-Fi%20Protected%20Access%20-%20Whitepaper.pdf.
Wireshark (2022).The world's most popular network protocol analyzer. https://www.wireshark.org/.
Witten, I. H., Frank, E., A, H. M., & Pal, C. (2016). Data Mining: Practical Machine Learning Tools and Techniques. Elsevier Science & Technology
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Matheus Santos Andrade; Jonathas Carvalho de Freitas; Aldo César dos Santos Dultra; Ubiratan Silva de Souza Junior
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.