Mecanismo químico de entrecruzamiento para la obtención de hidrogeles: Síntesis, condiciones de entrecruzamiento y aplicaciones biofarmacêuticas

Autores/as

DOI:

https://doi.org/10.33448/rsd-v12i8.43072

Palabras clave:

Hidrogeles; Reticulación de hidrogel; Reticulación química; Aplicaciones biomédicas.

Resumen

Los hidrogeles son matrices poliméricas tridimensionales con aplicaciones biomédicas reconocidas. Los hidrogeles entrecruzados químicamente ofrecen una mayor estabilidad mecánica que los hidrogeles entrecruzados físicamente debido a los enlaces covalentes entre sus cadenas poliméricas. La preparación de hidrogeles por entrecruzamiento químico involucra tres componentes básicos: monómero, iniciador y agente de entrecruzamiento, los cuales deben estar presentes en proporciones que no alteren la integridad del hidrogel. El mecanismo de entrecruzamiento químico puede diseñarse a partir de reacciones entre grupos funcionales complementarios, reacciones por luz ultravioleta, polimerización radicalaria, irradiación de alta energía, entre otras. En esta revisión, revisamos los mecanismos de reticulación química que involucran polímeros sintéticos o naturales. Finalmente, se discuten las aplicaciones biomédicas de los hidrogeles, como la administración de fármacos, el cultivo celular, la ingeniería de tejidos, la terapia contra el cáncer, entre otras.

Citas

Afzal, S., Maswal, M., & Dar, A. A. (2018). Rheological behavior of pH responsive composite hydrogels of chitosan and alginate: characterization and its use in encapsulation of citral. Colloids and Surfaces B: Biointerfaces, 169 (1), 99-106. https://doi.org/10.1016/j.colsurfb.2018.05.002.

Ahsan, A., Tian, W-X., Farooq, M. A., & Khan, D. H. (2021). An overview of hydrogels and their role in transdermal drug delivery. International Journal of Polymeric Materials and Polymeric Biomaterials. 70 (8), 574-584. https://doi.org/10.1080/00914037.2020.1740989.

Akhtar, M. F., Hanif, M., & Ranjh, N. M. (2015). Methods of synthesis of hydrogels. A review. Saudi Pharmaceutical Journal, 24 (5), 554-559. http://dx.doi.org/10.1016/j.jsps.2015.03.022.

Alavarse, A. C., Frachini, E. C. G., Silva, R. L. C. G., Lima, V. H., Shavandi, A., & Petri, D. F. S. (2022). Crosslinkers for polysaccharides and proteins: Synthesis conditions, mechanisms, and crosslinking efficiency, a review. International Journal of Biological Macromolecules, 202 (31), 240-256. https://doi.org/10.1016/j.ijbiomac.2022.01.029.

Badali, E., Mohajer, M., Hassanzadeh, S., Saghati, S., & Khanmohammadi, M. (2021). Enzymatic crosslinked hydrogels for biomedical application. Polymer Science, Series A, 63, 1-22. 10.20944/preprints202104.0652.v1.

Bernhard, S., & Tibbitt, M. W. (2021). Supramolecular engineering of hydrogels for drug delivery. Advanced Drug Delivery Reviews, 171, 240-256. https://doi.org/10.1016/j.addr.2021.02.002.

Cao, C., Feng, Y., Kong, B., Sun, F., Yang, L., & Liu, Q. (2021). Transglutaminase crosslinking promotes physical and oxidative stability of filled hydrogel particles based on biopolymer phase separation. International Journal of Biological Macromolecules, 172, 429-438. 10.1016/j.ijbiomac.2021.01.0.

Chafran, L., Carfagno, A., Altalhi, A., & Bishop, B. (2022). Green hydrogel synthesis: Emphasis on proteomics and polymer particle-protein interaction. Polymers, 14, 4755, 1-41, 2022. https://doi.org/10.3390/polym14214755.

Chen, H., Chen, Q., Hu, R., Wang, H., Newby, B. Z., Chang, Y., & Zheng, J. (2015). Mechanically strong hybrid double network hydrogels with antifouling properties. Journal of Materials Chemistry B, 3 (27), 1-10. 10.1039/c5tb00681c.

Chen, Y., Zhang, Y., Li, H., Shen, J., Zhang, F., He, J., Lin, J., Wang, B., Niu, S., & Han, Z. (2023). Bioinspired hydrogel actuator for soft robotics: Opportunity and challenges. Nanotoday, 49, 101764. doi.org/10.1016/j.nantod.2023.101764.

Choi, E. J., Ha, S., Lee, J., Premkumar, T., & Song, C. (2018). UV-mediated synthesis of pNIPAM-crosslinked double-network alginate hydrogels: Enhanced mechanical and shape-memory properties by metal ions and temperature. Polymer, 149 (1), 206-212. https://doi.org/10.1016/j.polymer.2018.06.080.

Dong, Y., Zhao, S., Lu, W., Chen, N., Zhu, D., & Li, Y. (2021). Preparation and characterization of enzymatically cross-linked gelatin/cellulose nanocrystal composite hydrogels. RSC Advances, 11, 10794-10803. 10.1039/d1ra00965f.

Dispenza, C., Giacomazza, D., & Jonsson, M. (2021). Micro- to nanoscale bio-hybrid hydrogels engineered by ionizing radiation. Biomolecules, 11 (47), 1-19. https://doi.org/10.3390/ biom11010047.

Francesko, A., Petkova, P., & Tzanov, T. (2018). Hydrogel dressings for advanced wound management. Current Medicinal Chemistry, 25 (41), 5782-5797. 10.2174/0929867324666170920161246.

González-Henríquez, C. M., Sarabia-Vallejos, M. A., & Rodriguez-Hernandez, J. (2017). Advances in the Fabrication of Antimicrobial Hydrogels for Biomedical Applications. Materials, 10, 232, 1-23. 10.3390/ma10030232.

Hajikarimi, A., & Sadeghi, M. (2020). Free radical synthesis of cross-linking gelatin base poly NVP/acrylic acid hydrogel and nanoclay hydrogel as cephalexin drug deliver. Journal of Polymer Research, 27, 57, 1-20. https://doi.org/10.1007/s10965-020-2020-1.

Hennink, W. E., & van Nostrum, C. F. (2012). Novel crosslinking methods to design hydrogels. Advanced Drug Delivery Reviews, 64, 223236.

Huang, J., Frauenlob, M., Shibata, Y., Wang, L., Nakajima, T., Nonoyama, T., Tsuda, M., Tanaka, S., Kurokawa, T., & Gong, J. P. (2020). Chitin-Based Double-Network Hydrogel as Potential Superficial Soft-Tissue-Repairing Materials. Biomacromolecules, 21 (10), 4220-4230. https://doi.org/10.1021/acs.biomac.0c01003.

Hu, W., Wang, Z., Xiao, Y., Zhang, S., & Wang, J. (2019). Advances in crosslinking strategies of biomedical hydrogels. Biomaterials Science, 7, 843-855. https://doi.org/10.1039/C8BM01246F.

Jiang, Z., Wang, Y., Xu, G., Jiang, Z., Ge, Z., Wang, M., & Ge, X. (2022). Flexible, high sensitive and radiation-resistant pressure-sensing hydrogel. Chinese Chemical Letters, 33 (2), 1011-1016. https://doi.org/10.1016/j.cclet.2021.06.043.

Kim, J., Oh, I., Park, S., Nguyen, N. Q., Ryu, J., & Sohn, D. (2021). Characteristics of self-healable laponite-poly(N-isopropylacrylamide) hydrogels prepared by γ-ray irradiation. Polymer, 214 (123365), 1-8. https://doi.org/10.1016/j.polymer.2020.123365.

Khodami, S., Kaniewska, K., Stojek, Z., & Karbarz, M. (2022). Hybrid double-network dual-crosslinked hydrogel with self-healing ability and mechanical stability. Synthesis, characterization and application for motion sensors. European Polymer Journal, 173, 111258. https://doi.org/10.1016/j.eurpolymj.2022.111258.

Krommelbein, C., Mütze, M., Konieczny, R., Schönherr, N., Griebel, J., Gerdes, W., Mayr, S. G., & Riedel, S. (2021). Impact of high-energy electron irradiation on mechanical, structural and chemical properties of agarose hydrogels. Carbohydrate Polymers, 263 (117970), 1-8. https://doi.org/10.1016/j.carbpol.2021.117970.

Le, X., Lu, W., Zhang, J., & Chen, T. (2019). Recent Progress in Biomimetic Anisotropic Hydrogel Actuators. Advanced Science, 6 (5), 1801584. doi.org/10.1002/advs.201801584.

Li, B., Wang, L., Xu, F., Gang, X., Demirci, U., Wei, D., Li, Y., Feng, Y., Jia, D., & Zhou, Y. (2015). Hydrosoluble, UV-crosslinkable and injectable chitosan for patterned cell-laden microgel and rapid transdermal curing hydrogel in vivo. Acta Biomaterialia, 22, 59-69. https://doi.org/10.1016/j.actbio.2015.04.026.

Liu, C., Bae, K. H., Yamashita, A., Chung, J. E., & Kurisawa, M. (2018). Thiol-mediated synthesis of hyaluronic acid-epigallocatechin-3-O-gallate conjugates for the formation of injectable hydrogels with free radical scavenging property and degradation resistance. Biomacromolecules, 18 (10), 3143-3155. https://doi.org/10.1021/acs.biomac.7b00788.

Ma, S., Rong, M., Lin, P., Bao, M., Xie, J., Wang, X., Huck, W. T. S., Zhou, F., & Liu, W. (2018). Fabrication of 3D tubular hydrogel materials through on-site surface free radical polymerization. Chemistry of Materials, 30, 6756-6768. 10.1021/acs.chemmater.8b02532.

Mahinroosta, M., Farsangi, Z. J., Allahverdi, A., & Shakoori, Z. (2018). Hydrogels as intelligent materials: a brief review of synthesis, properties and applications, Materials Today Chemistry, 8,42-55. https://doi.org/10.1016/j.mtchem.2018.02.004.

Madduma-Bandarage, U. S. K., & Madihally, S. V. (2021). Synthetic hydrogels: Synthesis, novel trends, and applications. Journal of Applied Polymer Science, 138, e50376, 1-23. https://doi.org/10.1002/app.50376.

Mondal, S., Das, S., & Nandi, A. K. (2020). A review on recent advances in polymer and peptide hydrogels. Soft Matter, 6 (16), 1404-1454. https://doi.org/10.1039/C9SM02127B.

Pita-López, M. L., Fletes-Vargas, G., Espinosa-Andrews, H., & Rodríguez-Rodríguez, R. (2021). Physically cross-linked chitosan-based hydrogels for tissue engineering applications: A state-of-the-art review. European Polymer Journal, 145, 110176, 1-20. https://doi.org/10.1016/j.eurpolymj.2020.110176.

Oliveira, I. M., Gonçalves, C., Shin, M. E., Lee, S., Reis, R. L., Khang, G., & Oliveira, J. M. (2021). Enzymatically crosslinked tyramine-gellan gum hydrogels as drug delivery system for rheumatoid arthritis treatment. Drug Delivery and Translational Research, 11 (3),1288-1300. https://doi.org/10.1007/s13346-020-00855-9.

Relleve, L. S., Gallardo, A. K. R., Tecson, M. G., & Luna, J. A. A. (2021). Biocompatible hydrogels of carboxymethyl hyaluronic acid prepared by radiation-induced crosslinking. Radiation Physics and Chemistry, 179 (109194), 1-8. https://doi.org/10.1016/j.radphyschem.2020.109194.

Saini, K. (2016). Preparation method, Properties and Crosslinking of hydrogel: a review. PharmaTutor, 5 (1), 27-36.

Sannino, A., Demitri, C., & Madaghiele, M. (2009). Biodegradable cellulose-based hydrogels: Design and applications. Materials (Basel), 2 (2), 353-373. 10.3390/ma2020353.

Sharma, S., & Tiwari, S. (2020). A review on biomacromolecular hydrogel classification and its applications. International Journal of Biological Macromolecules, 162 (1), 737-747. https://doi.org/10.1016/j.ijbiomac.2020.06.110.

Singh, S. K., Dhyani, A., & Juyal, D. (2017). Hydrogel: preparation, characterization and applications. The Pharma Innovation Journal, 6 (6), 25-32.

Singhal, A., Sinha, N., Kumari, P., & Purkayastha, M. (2020). Synthesis and applications of hydrogels in cancer therapy. Anti-Cancer Agents in Medicinal Chemistry, 20 (12), 1431-1446. 10.2174/1871521409666200120094048.

Sui, X. (2010). Preparation of a rapidly forming poly (ferrocenylsilane)-poly(ethylene glycol)- based hydrogel by a thiol-michael addition click reaction, Macromolecular Rapid Communications, 31 (23), 2059-2063. https://doi.org/10.1002/marc.201000420.

Sun, J. Y., Zhao, X., Illeperuma, W. R. K., Chaudhuri, O., Oh, K. H. O., Mooney, D. J., Vlassak, J. J., & Suo, Z. (2012). Highly stretchable and tough hydrogels. Nature, 489, 133-136.

Ullah, F., Othman, M. B. H., Javed, F., Ahmad, Z., & Akil, H. M. (2015). Classification, processing and application of hydrogels: A review. Materials Science & Engineering C. 57 (1), 414-433. https://doi.org/10.1016/j.msec.2015.07.053.

Wei, Q., Duan, J., Ma, G., Zhang, W., Wang, Q., & Hu, Z. (2019). Enzymatic crosslinking to fabricate antioxidant peptide-based supramolecular hydrogel for improving cutaneous wound healing. Journal of Materials Chemistry B, 13 (7), 1-5. 10.1039/x0xx00000x.

Xu, X., Jerca, V. V., & Hoogenboom, R. (2021). Bioinspired double network hydrogels: from covalent double network hydrogels via hybrid double network hydrogels to physical double network hydrogels. Materials Horizons, 8, 1173-1188. https://doi.org/10.1039/D0MH01514H.

Yao, C., Liu, Z., Yang, C., Wang. W., Ju, X. J., Xie, R., & Chu, L. Y. (2016). Smart Hydrogels with Inhomogeneous Structures Assembled Using Nanoclay-Cross-Linked Hydrogel Subunits as Building Blocks. Applied Materials & Interfaces, 8 (33), 21721-21730. doi.org/10.1021/acsami.6b07713.

Yu, Q., Bauer, J. M., Moore, J. S., & Beebe, D. J. (2001). Responsive biomimetic hydrogel valve for microfluidics. Applied Physics Letters, 78, 2589-2591. doi.org/10.1063/1.1367010.

Descargas

Publicado

01/09/2023

Cómo citar

SIQUEIRA, E. C. de .; FRANÇA , J. A. A. de .; SOUZA, R. F. M. de .; LEOTERIO, D. M. da S. .; CORDEIRO, J. N. .; DOBOSZEWSKI, B. . Mecanismo químico de entrecruzamiento para la obtención de hidrogeles: Síntesis, condiciones de entrecruzamiento y aplicaciones biofarmacêuticas. Research, Society and Development, [S. l.], v. 12, n. 8, p. e18312943072, 2023. DOI: 10.33448/rsd-v12i8.43072. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/43072. Acesso em: 23 nov. 2024.

Número

Sección

Revisiones