Disfunciones Orgánicas debido a Covid-19

Autores/as

DOI:

https://doi.org/10.33448/rsd-v12i9.43155

Palabras clave:

SARS-CoV-2; Covid-19; Disfunciones orgánicas.

Resumen

El objetivo de este estudio es realizar una revisión narrativa de la literatura para comprender mejor el extenso efecto patológico de Covid-19 en órganos vitales y señalar nuevas actualizaciones sobre el tema. El mundo se ha visto afectado por la pandemia de enfermedad por coronavirus 2019, un síndrome respiratorio agudo grave causado por el coronavirus SARS-CoV-2. Las disfunciones orgánicas se presentan como alteraciones o pérdida de las funciones normales de los órganos y sistemas vitales del cuerpo humano, lo que puede conducir a la falla de múltiples órganos. Aunque Covid-19 se presenta principalmente como una infección del tracto respiratorio transmitida por gotitas de aire, los datos crecientes sugieren la participación de múltiples órganos. El SARS-CoV-2 tiene como mecanismo de infección la unión de la proteína viral al receptor ECA2, lo que facilita la propagación del virus a través del sistema vascular. La evidencia acumulada indica que los pacientes que han desarrollado Covid-19 pueden presentar además de compromiso de la vía aérea, síntomas neurológicos, cardíacos, renales, metabólicos e intestinales acompañados de una respuesta inmune deficiente e ineficaz, sin embargo, nuevas búsquedas son cruciales para comprender mejor su etiología. 

Citas

Akter, F., Mannan, A., Mehedi, H. H., Rob, M. A., Ahmed, S., Salauddin, A., Hossain, M. S., & Hasan, M. M. (2020). Clinical characteristics and short term outcomes after recovery from COVID-19 in patients with and without diabetes in Bangladesh. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(06), 2031-2038. doi.org/10.1016/j.dsx.2020.10.016

Al-Ramadan, A., Rabab’h, O., Shah, J., & Gharaibeh, A. (2021). Acute and Post-Acute Neurological Complications of COVID-19. Neurol. Int, 13, 102-119. doi.org/10.3390/neurolint13010010

Anghebem, M. I., Rego, F. G. d. M., & Picheth, G. (2020). COVID-19 e Diabetes: a relação entre duas pandemias distintas. rbac, 52(2), 154-159. doi.org/10.21877/2448-3877.20200001

Augustine, R., S, A., Nayeem, A., Salam, S. A., Augustine, P., Dan, P., & Hasan, A. (2022). Increased complications of COVID-19 in people with cardiovascular disease: Role of the renin–angiotensin-aldosterone system (RAAS) dysregulation. Chemico-Biological Interactions, 351. doi.org/10.1016/j.cbi.2021.109738

Batlle, D., Soler, M., Sparks, M., Hiremath, S., South, A., Welling, P., & Swaminathan, S. (2020). Acute Kidney Injury in COVID-19: Emerging Evidence of a Distinct Pathophysiology. J Am Soc Nephrol, 31(07), 1380-1383. doi.org/10.1681/ASN.2020040419

Batista, L.S. & Kumada, K. M. O. (2021). Análise metodológica sobre as diferentes configurações da pesquisa bibliográfica. Revista Brasileira de Iniciação Científica. 8(021029), 1-17.

Brann, D. H., Tsukahara, T., Weinreb, C., Lipovsek, M., Gong, B., Chance, R., Macaulay, I. C., & Datta, S. R. (2020). Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system sugests mechanisms underlying COVID-19–associated anosmia. Sci Adv, 6(31). doi.org/10.1126/sciadv.abc5801

Brem, F., Chaymae, M., Rasras, H., Merbouh, M., Bouazzaoui, M., Bkiyar, H., Abda, N., Zakaria, B., Ismaili, N., Housni, B., & Ouafi, N. (2022). Acute Myocardial Injury Assessed by High Sensitive Cardiac Troponin Predicting Severe Outcomes and Death in Hospitalized Patients with COVID-19 Infection. Clinical and Applied Thrombosis/Hemostasis, 18. doi.org/10.1177/10760296221090227

Chen, Y., Shao, S., Hsu, C., Wu, I., Hung, M., & Chen, Y. (2020). Incidence of acute kidney injury in COVID-19 infection: a systematic review and metaanalysis. Critical Care, 24(346). doi.org/10.1186/s13054-020-03009-y

Ebinger, J. E., Achamallah, N., Ji, H., Claggett, B. L., Sun, N., Botting, P., & Cheng, S. (2020). Pre-existing traits associated with Covid-19 illness severity. PLOS ONE, 15(7). doi.org/ 10.1371/journal.pone.0236240

Fignani, D., Licata, G., Brusco, N., Nigi, L., Grieco, G. E., Marselli, L., Overbergh, L., Gysemans, C., Colli, M. L., & Marchetti, P. (2020). SARS-CoV-2 Receptor Angiotensin I-Converting Enzyme Type 2 (ACE2) Is Expressed in Human Pancreatic b-Cells and in the Human Pancreas Microvasculature. Frontiers in endocrinology, 13(11). doi.org/10.3389/fendo.2020.596898

Garces, T. S., Sousa, G. J. B., Cestari, V. R. F., Florêncio, R. S., Damasceno, L. L. V., Pereira, M. L. D., & Moreira, T. M. M. (2022). Diabetes como um fator associado ao óbito hospitalar por COVID-19 no Brasil, 2020. Revista do SUS, 31(1). doi.org/10.1590/S1679-49742022000100021

Hingorani, K. S., Bhadola, S., & Cervantes-Arslanian, A. M. (2022). COVID-19 and the brain. Trends in Cardiovascular Medicine, 32, 323-330. doi.org/10.1016/j.tcm.2022.04.004

Hung, Y., Lin, W. Y., Chao, T. F., Liao, J. N., Lin, Y. J., Lin, W. S., Chen, Y. J., & Chen, S. A. (2020). Management of Atrial Fibrillation in COVID-19 Pandemic. Circulation Journal, 84, 1679-1685. doi.org/10.1253/circj.CJ-20-0566

Isnard, P., Vergnaud, P., Garbay, S., Jamme, M., Eloudzeri, M., Karras, A., Anglicheau, D., Galantine, V., Eddine, A. J., Gosset, C., & Rabant, M. (2023). A specific molecular signature in SARS-CoV-2 infected kidney biopsies. JCI Insight, 8(5). doi.org/10.1172/jci.insight.165192

Jewell, P., Bramham, K., Galloway, J., Post, F., Norton, S., Teo, J., Fisher, R., & Lioudaki, E. (2021). COVID-19 related acute kidney injury; incidence, risk factors and outcomes in a large UK cohort. BMC Nephrol, 22(359). doi.org/10.1186/s12882-021-02557-x

Jin, B., Singh, R., Ha, S., Zogg, H., Park, P., & Ro, S. (2021). Pathophysiological mechanisms underlying gastrointestinal symptoms in patients with COVID-19. World J Gastroenterol, 27(19), 2341-2352. doi.org/10.3748/wjg.v27.i19.2341

Kozlik, M., Btahuszewska, A., & Kazmierski, M. (2022). Cardiovascular System during SARS-CoV-2 Infection. International Journal of Environmental Research and Public Health, 19, 1184. doi.org/10.3390/ ijerph19031184

Lowe, R., Ferrari, M., Mohi, M., Jackson, A., Beecham, R., Veighey, K., Cusack, R., Richardson, D., Grocott, M., Levett, D., & Dushianthan, A. (2021). Clinical characteristics and outcome of criticallyill COVID-19 patients with acute kidney injury: a single centre cohort study. BMC Nephrology, 22(92). doi.org/10.1186/s12882-021-02296-z

Mehrabani, M. M., Karvandi, M. S., Maafi, P., & Doroudian, M. (2022). Neurological complications associated with Covid‐19; molecular mechanisms and therapeutic approaches. Rev Med Virol, 2334. doi.org/10.1002/rmv.2334

Nadim, M., Forni, L., Mehta, R., Connor, M., Liu, K., Ostermann, M., Rimmelé, T., Zarbock, A., Bell, S., & Kellum, J. (2020). COVID-19 associated acute kidney injury: consensus report of the 25th Acute Disease Quality Initiative (ADQI) Workgroup. Nature Reviews Nephrology, 16(12), 747-764. doi.org/10.1038/s41581-020-00356-5

Nalbandian, A., Sehgal, K., Gupta, A., Madhavan, M., McGroder, C., Stevens, J., Cook, J., & Wan, E. (2021). Post-acute COVID-19 syndrome. Nature Medicine, 27, 601-6015. doi.org/10.1038/s41591-021-01283-z

Newcombe, V., Dangayach, N., & Sonneville, R. (2021). Neurological complications of COVID 19. Intensive Care Med, 47, 1021-1023. doi.org/10.1007/s00134-021-06439-6

Nishiga, M., Wang, D. W., Han, Y., Lewis, D. B., & Wu, J. C. (2020). COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives. Nature Revlews Cardiology, 17, 543-558. doi.org/10.1038/ s41569-020-0413-9

Peiris, S., Ordunez, P., Dipette, D., Padwal, R., Ambrosi, P., Toledo, J., Stanford, V., Lisboa, T., Aldighieri, S., & Reveiz, L. (2022). Cardiac Manifestations in Patients with COVID-19: A Scoping Review. Global Heart, 17(1). doi.org/10.5334/ gh.1037

Rathmann, W., Kuss, O., & Kostev, K. (2022). Incidence of newly diagnosed diabetes after Covid-19. Diabetologia, 65(6), 949-954. doi.org/10.1007/s00125-022-05670-0

Ruiz, V. J. C., Montes, R. I., Puerta, J. M. P. J. M., Ruiza, C., & Rodrígueza, L. M. (2020). SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine and Growth Factor Reviews, 54, 62-75. doi.org/10.1016/j.cytogfr.2020.06.001

Sabaghian, T., Kharazmi, A., Ansari, A., Omidi, F., Kazemi, S., Hajikhani, B., Harami, R., Tajbakhsh, A., Omidi, S., Haddadi, S., & Mirsaeidi, M. (2022). COVID-19 and Acute Kidney Injury: A Systematic Review. Frontiers inMedicine, 9. doi.org/10.3389/fmed.2022.705908

Sathish, T., Kapoor, N., Cao, Y., Tapp, R. J., & Zimmet, P. (2020). Proportion of newly diagnosed diabetes in COVID-19 patients: A systematic review and meta-analysis. Wiley, 23(3), 870-874. doi.org/10.1111/dom.14269

Sathisha, T., Tappb, R. J., Cooperd, M. E., & Zimmetd, P. (2021). Potential metabolic and inflammatory pathways between COVID-19 and new-onset diabetes. Diabetes & Metabolism, 47(2). doi.org/10.1016/j.diabet.2020.10.002

Shimohata, T. (2022). Neuro-COVID- 19. Clin Exp Neuroimmunol, 13, 17-23. doi.org/10.1111/cen3.12676

Shetty, A., Tawhari, I., Boueri, L., Seif, N., Alahmadi, A., Gargiulo, R., Aggarwal, V., Usman, I., Kisselev, S., & Quaggin, S. (2021). COVID-19 – Associated Glomerular Disease. J Am Soc Nephrol, 32(01), 33-40. doi.org/10.1681/ASN.2020060804

Siddiq, M., Chan, A., Miorin, L., Yadaw, A., Beaumont, K., Kehrer, T., Cupic, A., & Iyengara, R. (2021). Functional Effects of Cardiomyocyte Injury in COVID-19. Journal of Virology, 96(2). doi.org/10.1128/JVI.01063-21

Sousa, J. R. & Santos, S. C. M. (2020). Análise do conteúdo em pesquisa qualitativa. Revista Pesquisa e Debate em Educação. 10(2), 1396-1416. doi.org/10.34019/2237-9444.2020.v10.31559.

Tanacli, R., Doeblin, P., Götze, C., Zieschang, V., Faragli, A., Stehning, C., Korosoglou, G., Erley, J., & Kelle, S. (2021). COVID-19 vs. Classical Myocarditis Associated Myocardial Injury Evaluated by Cardiac Magnetic Resonance and Endomyocardial Biopsy. Frontiers in Cardiovascular Medicine, 8. doi.org/10.3389/fcvm.2021.737257

Tiwari, N. R., Phatak, S., Sharma, V. R., & Agarwal, S. K. (2021). COVID-19 and thrombotic microangiopathies. Thrombosis Research, 202, 191-198. doi.org/10.1016/j.thromres.2021.04.012

Wool, G. D., & Miller, J. L. (2020). The Impact of COVID-19 Disease on Platelets and Coagulation. Pathobiology, 88(1), 15-27. doi.org/10.1159/000512007

Wu, X., Jing, H., Wang, C., Wang, Y., Zuo, N., Jiang, T., Novakovic, V., & Shi, J. (2022). Intestinal Damage in COVID-19: SARS-CoV-2 Infection and Intestinal Thrombosis. Fronteiras em Microbiologia, 13. doi.org/10.3389/fmicb.2022.860931

Yang, Y., Wei, Z., Xiong, C., & Qian, H. (2022). Direct mechanisms of SARS CoV 2 induced cardiomyocyte damage: an update. Virology, 19(1), 108. doi.org/10.1186/s12985-022-01833-y

Yarijani, Z. M., & Najafi, H. (2021). Kidney injury in COVID-19 patients, drug development and their renal complications: Review study. Biomedicine & Pharmacotherapy, 142. doi.org/10.1016/j.biopha.2021.111966

Ye, Q., Wang, B., Zhang, T,. Xu, J., & Shang, S. (2020). The mechanism and treatment of gastrointestinal symptoms in patients with COVID-19. American Journal of Physiology Gastrointest Liver Physiol, 319(2), 245-252. doi.org/10.1152/ajpgi.00148.2020

Xie, Y., Xu, E., Bowe, B., & Aly, Z. A. (2022). Long-term cardiovascular outcomes of COVID-19. Nature Medicine, 28, 583-590. doi.org/10.1038/s41591-022-01689-3

Zhang, H., Shao, B., Dang, Q., Chen, Z., Zhou, Q., Luo, H., Yuan, W., & Sun, Z. (2021) Pathogenesis and Mechanism of Gastrointestinal Infection With COVID-19. Frontiers in Immunology, 12. doi.org/10.3389/fimmu.2021.674074

Publicado

13/09/2023

Cómo citar

CARVALHO, F. dos S. .; CAVALLI, G. .; NERY, F. N. .; MARTINS, L. G. P. . Disfunciones Orgánicas debido a Covid-19. Research, Society and Development, [S. l.], v. 12, n. 9, p. e5412943155, 2023. DOI: 10.33448/rsd-v12i9.43155. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/43155. Acesso em: 30 jun. 2024.

Número

Sección

Ciencias de la salud