Procesos físicos industriales para reducir el tiempo de cocción del arroz integral - Una revisión

Autores/as

DOI:

https://doi.org/10.33448/rsd-v12i9.43232

Palabras clave:

Compuestos nutricionales; Salvado de arroz; Tiempo de cocción; Absorción de agua; Fisuras en los granos.

Resumen

El arroz tiene importancia social, económica y nutricional en diferentes países. En su forma integral, su consumo confiere más beneficios para la salud. Sin embargo, por sus características de mayor dureza y tiempo de cocción prolongado, tiene baja aceptación entre los consumidores. El objetivo de este estudio fue analizar, a través de una revisión bibliográfica, los métodos que utilizan principios físicos para reducir el tiempo de cocción del arroz integral. Se seleccionaron 69 estudios encontrados en diferentes bases de datos, publicados desde 2002 hasta 2022. Se recopilaron las características del procesamiento del arroz, sus principales formas de consumo, la superioridad nutricional del arroz integral, los desafíos de la producción y la contextualización del desarrollo del arroz de nuevos métodos de procesamiento. Se describieron y analizaron los principales métodos de procesamiento encontrados para reducir el tiempo de cocción del arroz integral en relación con los métodos de investigación, los principios físicos y los resultados obtenidos. Siendo ellos el pulido parcial; pre-hidratación, cocción y secado; inducción de fisuras; calefacción por radiación infrarroja; tratamiento con alta presión hidrostática; tratamiento ultrasónico y tratamiento con plasma frío a baja presión. Se encontró que, aunque estos métodos reducen el tiempo de cocción, algunos pueden causar una disminución en el valor nutricional del arroz integral. De esta forma, se consideró que los tratamientos de pre-hidratación, cocción y secado y la inducción de fisuras en los granos son los más promisorios, ya que influyeron significativamente en la reducción del tiempo de cocción del arroz integral, sin alterar su valor nutricional.

Citas

Abhilasha, P., Pal, U. S., Panda, M. K., Sahoo, G., Nayak, R., Rayaguru, K. & Sahoo, N. R. (2021). Standardisation of cooking and conditioning methods for preparation of quick cooking germinated brown rice. Journal of the Indian Chemical Society, 98 (8). doi.org/10.1016/j.jics.2021.100093

Atungulu, G. G. & Pan, Z. (2014). Rice industrial processing worldwide and impact on macro- and micronutrient content, stability, and retention. Annals of the New York Academy of Sciences, 134, (1), 15-28. doi.org/10.1111/nyas.12492

Batista, C. S., Santos, J. P. & Vanier, N. L. (2018). Desenvolvimento de arroz de cozimento rápido: Do processamento à qualidade do produto final. Labgrãos Magazine, 2, (2).

Batista, C. S., Santos, J. P., Dittgen, C. L., Colussi, R., Bassinello, P. Z., Elias, M. C., & Vanier, N. L. (2019). Impact of cooking temperature on the quality of quick cooking brown rice. Food chemistry, 286, 98-105. https://doi.org/10.1016/j.foodchem.2019.01.187

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. (2009). Instrução normativa nº 6, de 16 de fevereiro de 2009. Aprova o Regulamento Técnico do Arroz, definindo o seu padrão oficial de classificação, com os requisitos de identidade e qualidade, a amostragem, o modo de apresentação e a marcação ou rotulagem. Diário Oficial da República Federativa do Brasil, Brasília. http://sistemasweb.agricultura.gov.br/sislegis/action/detalhaAto.do?method=visualizarAtoPortalMapa&chave=1687046295

Bualuang, O., Tirawanichakul, Y. & Tirawanichakul, S. (2012). Comparative Study between Hot Air and Infrared Drying of Parboiled Rice: Kinetics and Qualities Aspects. Journal of Food Processing and Preservation, 37 (6), 1119-1132. Doi.org/10.1111/j.1745-4549.2012.00813.

Cáceres, P. J., Peñas, E, Martínez-Villaluenga, C., García-Morab, P. & Frías, J. (2019). Development of a multifunctional yogurt-like product from germinated brown rice. LWT – Food Science and Technology, 99, 306-312. doi.org/10.1016/j.lwt.2018.10.008

Carcea, M. (2021). Value of Whole grain Rice in a Healthy Human Nutrition. Agriculture, 11 (8), 720. doi.org/10.3390/agriculture11080720

Chen, M.; Bergman, C. J. & Mcclung, A. M. (2019). Hydrolytic rancidity and its association with phenolics in rice bran. Food Chemistry, 285, 485-491. doi.org/10.1016/j.foodchem.2019.01.139

Colina, J.; Guerra, M. (2009). Obtención y evaluación de arroz integral de cocción rápida. Interciencia, 34, (10). Recuperado em 01 de fevereiro de 2022, de http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0378-18442009001000012&lng=es&tlng=es.

Cui, L., Pan, Z., Yue, T., Atungulu, G. & Berrios, J. J. (2010). Effect of ultrasonic treatment of brown rice at different temperatures on cooking properties and quality. Cereal Chemistry, 87 (5), 403-408. doi/10.1094/CCHEM-02-10-0034

Dang, L. T. K.; Therdthai, N. & Ratphitagsanti, W. (2018). Improvement of structure and cooking quality of brown rice using ultrasonic and enzymatic treatments. Journal of Food Processing and Preservation, 42 (11). doi.org/10.1111/jfpp.13814

Das, M. Banerjee, R. & Bal, S. (2008a). Evaluation of physicochemical properties of enzyme treated brown rice (Part B). LWT-Food Science and Technology, 41 (10), 2092-2096. doi.org/10.1016/j.lwt.2007.11.018

Das, M., Gupta, S., Kapoor, V., Banerjee, R. & Bal, S. (2008b). Enzymatic polishing of rice – A new processing technology. LWT Food Science and Technology, 41, (10), 2079-2084. doi.org/10.1016/j.lwt.2008.02.007

Ding, C., Khir, R., Pan, Z., Wood, D. F., Venkitasamy, C., Tu, K., El-Mashad, H. & Berrios, J. (2018). Influence of infrared drying on storage characteristics of brown rice. Food Chemistry, 264, 149-156. doi.org/10.1016/j.foodchem.2018.05.042

Fontanella, M. C., Martin, M., Tenni, D., Beone, G. M. & Romani, M. (2021). Effect of Milling and Parboiling Processes on Arsenic Species Distribution in Rice Grains. Rice Science, 28 (4), 402-408. doi.org/10.1016/j.rsci.2021.05.010

Foster-powell, K.; Holt, S. H. & Brand-miller, J. C. (2002). International table of glycemic index and glycemic load values: 2002. The American Journal of Clinical Nutrition, 76, 5-56. doi/10.1093/ajcn/76.1.5

Galvão, M. C. B., & Ricarte, I. L. M. (2019). Revisão sistemática da literatura: conceituação, produção e publicação. Logeion: Filosofia da informação, 6(1), 57-73. doi.org/10.21728/logeion.2019v6n1.p57-73

Gavahian, M., Chu, Y., Khaneghah, A. M., Barba, F. J. & Misra, N. N. (2018). A critical analysis of the cold plasma induced lipid oxidation in foods. Trends in Food Science & Technology, 77, 32-41. doi.org/10.1016/j.tifs.2018.04.009

Gong, S., Luo, S. J., Li, T., Liu, C. M., Zhang, G. W., Chen, J., Zeng, Z. C. & Liu, R. H. (2017). Phytochemical profiles and antioxidant activity of processed brown rice products. Food Chemistry, 232, 67-78. doi/10.1016/j.foodchem.2017.01.093

IBGE – Instituto Brasileiro de Geografia e Estatística. Censo Agro 2017. Censo agropecuário: resultados definitivos 2017. Rio de Janeiro: IBGE, 2019. Recuperado em 17 de fevereiro de 2022, de https://censos.ibge.gov.br/agro/2017/2013-agencia-de-noticias/releases/28646-pof-2017-2018-brasileiro-ainda-mantem-dieta-a-base-de-arroz-e-feijao-mas-consumo-de-frutas-e-legumes-e-abaixo-do-esperado.html

Itani, T., Tamaki, M., Arai, E. & Horino, T. (2002). Distribution of amylose, nitrogen, and minerals in rice kernels with various characters. Journal of Agricultural and Food Chemistry, 50 (19), 5326–5332. doi.org/10.1021/jf020073x

Joy, E. J. M., Ander, E. L., Broadley, M. R., Young, S. D., Chilimba, A. D. C., Hamilton, E. M. & Watts, M. J. (2017). Elemental composition of Malawian rice. Environmental Geochemistry and Health, 39 (4), 835-845. doi/10.1007/s10653-016-9854-9.

Juliano B.O. (2016) Rice: Overview. In: Wrigley, C., Corke, H., and Seetharaman, K., Faubion, J., (eds.) Encyclopedia of Food Grains vol. 1, pp. 125-129. Oxford: Academic Press. doi.org/10.1016/B978-0-12-394437-5.00015-2

Kang, D. F.; He, J. F. & Wang, X. C. (2007). The actuality and prospect of instant rice production in China. Cereal Process, 32, 40-42.

Kaur, A.; Bhise, S. & Kaur, M. (2020). Hydrothermal treatments for paddy to improve physicochemical quality of brown rice. Journal of Microbiology, Biotechnology and Food Sciences, 9 (5), 913-926. doi/10.15414/jmbfs.2020.9.5.913-926

Kennedy, G.; Burlingame, B. & Nguyen, V. N. Nutritional contribution of rice and impact of biotechnology and biodiversity in rice-consuming countries. In: International Rice Commission, 20, 2003, Bangkok. Proceedings of the 20th session of the International Rice Commission. Bangkok: Rome, FAO, 2003. Recuperado em 08 de dezembro de 2022, em http://www.fao.org/3/y4751e00.html

Khalua, R. K., Tewari, S. & Mondal, R. (2019). Nutritional comparison between brown rice and white rice. Magnesium, 5, 20.

Kumar, A., Lal, M. K., Nayak, S., Sahoo, U., Behera, A., Bagchi, T. B., Parameswaran, C., Swain, P. & Sharma, S. (2022). Effect of parboiling on starch digestibility and mineral bioavailability in rice (Oryza sativa L.). LWT-Food Science and Technology, 156. doi.org/10.1016/j.lwt.2021.113026

Lang, G. H., Timm, N. S., Neutzling, H. P., Ramos, A. H., Ferreira, C. D. & Oliveira, M. (2022). Infrared radiation heating: A novel technique for developing quick-cooking rice. LWT- Food Science and Technology, 154. doi.org/10.1016/j.lwt.2021.112758

Lang, G. H., Lindemann, I., Ferreira, C. D., Pohndorf, R. S., Vanier, N. L. & Oliveira, M. (2018). Influence of drying temperature on the structural and cooking quality properties of black rice. Cereal Chemistry, 95 (4), 564-574. doi/10.1002/cche.10060

Lee, J., Sreenivasulu, N., Hamilton, R. S. & Kohli, A. (2019). Brown Rice, a Diet Rich in Health Promoting Properties. Journal of Nutritional Science and Vitaminology, 65, 26-28. doi/10.3177/jnsv.65. S26

Li, S. C.; Chou, T. C. & Shih, C. K. (2011). Effects of brown rice, rice bran, and polished rice on colon carcinogenesis in rats. Food Research International, 4 (1), 209-216. doi/10.1016/j.foodres.2010.10.034

Li, Y., Li, Y., Chen, Z., Bu, L., Shi, F. & Huang, J. (2021). High-temperature air fluidization improves cooking and eating quality and storage stability of brown rice. Innovative Food Science and Emerging Technologies, 67. doi.org/10.1016/j.ifset.2020.102536

Luo, X., Li, Y., Yang, D. & Xing, J. (2019). Effects of electron beam irradiation on storability of brown and milled rice. Journal of Stored Products Research, 81 (4), 22-30. doi/10.1016/j.jspr.2018.12.003

Misra, N. N., Pankaj, S. K., Segat, A., & Ishikawa, K. (2016). Cold plasma interactions with enzymes in foods and model systems. Trends in Food Science and Technology, 55, 39-47. doi/10.1016/j.tifs.2016.07.001

Mohorič, A., Vergeldt, F., Gerkema, E., de Jager, A., van Duynhoven, J., van Dalen, G., & Van As, H. (2004). Magnetic resonance imaging of single rice kernels during cooking. Journal of Magnetic Resonance, 171(1), 157-162. doi. 10.1016/j.jmr.2004.08.013

Monks, J. L. F., Vanier, N. L., Casaril, J., Berto, R. M., de Oliveira, M., Gomes, C. B., & Elias, M. C. (2013). Effects of milling on proximate composition, folic acid, fatty acids, and technological properties of rice. Journal of Food Composition and Analysis, 30(2), 73-79. doi.org/10.1016/j.jfca.2013.01.009

Monge-Rojas, R., Mattei, J., Fuster, T., Willett, W., & Campos, H. (2014). Influence of sensory and cultural perceptions of white rice, brown rice, and beans by Costa Rican adults in their dietary choices. Appetite, 81, 200-208. doi. 10.1016/j.appet.2014.06.028

Mohapatra, B. & Bahl, S. (2006). Cooking quality and instrumental textural attributes of cooked rice for different milling fractions. Journal of Food Engineering, 73 (3), 253-259. doi.org/10.1016/j.jfoodeng.2005.01.028

Muller, A., Nunes, M. T., Maldaner, V., Coradi, P. C., Moraes, R. S., Martens, S., Leal, A. F., Pereira, V. F. & Marin, C. K. (2022). Rice Drying, Storage and Processing: Effects of Post-Harvest Operations on Grain Quality. Rice Science, 29 (1), 16-30. doi.org/10.1016/j.rsci.2021.12.002

Paiva, F. F., Vanier, N. L., Berrios, J., Pinto, V. Z., Wood, D., Williams, T., Pan, J. & Elias, M. C. (2016). Polishing and parboiling effect on the nutritional and technological properties of pigmented rice. Food Chemistry, 191, 105-112. doi.org/10.1016/j.foodchem.2015.02.047

Park, D. & Han, J. (2016). Quality controlling of brown rice by ultrasound treatment and its effect on isolated starch. Carbohydrate Polymers, 137, 30-38. doi/10.1016/j.carbpol.2015.10.045

Rattanamechaiskul, C.; Soponronnarit, S. & Prachayawarakorn, S. (2014). Glycemic response to brown rice treated by different drying media. Journal of Food Engineering, 122 (1), 48-55. doi/10.1016/j.jfoodeng.2013.08.022

Rathna, T. S. P. Ann, R. L. E. N., Ravichandran, K. & Antony, U. (2019). Nutritional and functional properties of coloured rice varieties of South India: a review. Journal of Ethnic Foods, 6 (11). doi/10.1186/s42779-019-0017-3

Reddy, C. K., Kimi, L., Haripriya, S. & Kang, N. (2017). Effects of Polishing on Proximate Composition, Physico- Chemical Characteristics, Mineral Composition and Antioxidant Properties of Pigmented Rice. Rice Science, 24 (5), 241-252. doi.org/10.1016/j.rsci.2017.05.002

Rosniyana, A., Rukunudin, I. H. & Shariffah, S. A. N. (2006). Effects of milling degree on the chemical composition, physicochemical properties, and cooking characteristics of brown rice. Journal of Tropical Agriculture and Food Science, 34 (1), 37–44. Recuperado em 12 de fevereiro de 2022, de http://jtafs.mardi.gov.my/jtafs/34-1/Brown%20Rice.pdf

Runge, J., Heringer, O. A., Ribeiro, J. S. & Biazati, L. B. (2019). Multi-element rice grains analysis by ICP OES and classification by processing types. Food Chemistry, 279, 419-424. doi.org/10.1016/j.foodchem.2018.07.162

Santos, B., Stone, L.F. & Vieira, N. R. A (2006.). A cultura do arroz no Brasil (2a ed). Revisada e ampliada. Santo Antônio de Goiás: Embrapa Arroz e Feijão.

Sandhu, R. S., Singh, N., Kaler, R. S. S., Kaur, A. & Shevkani, K. (2018). Effect of degree of milling on physicochemical, structural, pasting and cooking properties of short and long grain Indica rice cultivars. Food Chemistry, 160, 231-238. doi.org/10.1016/j.foodchem.2018.03.092

Sapwarobol, S.; Saphyakhajorn, W. & Astina, J. (2021). Biological Functions and Activities of Rice Bran as a Functional Ingredient: A Review. Nutr Metab Insights, 14. doi/10.1177/11786388211058559

Shraim, A. M., Ahmad, M. I., Rahman, M. S. F. & Ng, J. C. (2022). Concentrations of essential and toxic elements and health risk assessment in brown rice from Qatari market. Food Chemistry, 376. doi.org/10.1016/j.foodchem.2021.131938

Sivakamasundari, S. K., Moses, J. A. & Anandharamakrisnan, C. (2020). Effect of parboiling methods on the physicochemical characteristics and glycemic index of rice varieties. Journal of Food Measurement and Characterization, 14, (6), 3122-3137. doi.org/10.1007/s11694-020-00551-9

Sirisoontaralak, P., Nakornpanom, N. N., Koakietdumrongkul, K. & Panumaswiwath, C. (2015). Development of quick cooking germinated brown rice with convenient preparation and containing health benefits. LWT – Food Science and Technology, 61 (1), 138-144. doi/10.1016/j.lwt.2014.11.015

Souza, C. R. C. & Silva, L. H. (2019). Efeitos de diferentes métodos de processamento sobre o tempo de cocção e nas características tecnológicas de arroz integral. Trabalho de conclusão de curso (Graduação em Ciência e Tecnologia de Alimentos), Universidade Federal do Pampa - campus Itaqui.

Souza, C. R. C.; Silva, L. H. & Costa, P. F. P. (2020). Redução do tempo de cocção do arroz integral através da indução de fissuras. Research, Society and Development, 9 (9). doi.org/10.33448/rsd-v9i9.7403

Storck, C, R. Variação na composição química em grãos de arroz submetidos a diferentes beneficiamentos. (2004). Dissertação (Mestrado em Ciência e Tecnologia de Alimentos) – Centro de Ciências Rurais, Universidade Federal de Santa Maria.

Thirumdas, R., Deshmukh, R. R. & Annapure, U. S. (2015). Effect of low temperature plasma processing on physicochemical properties and cooking quality of basmati rice. Innovative Food Science & Emerging Technologies, 31, 83-90. doi.org/10.1016/j.ifset.2015.08.003

Thirumdas, R., Saragapani, C., Ajinkya, M. T., Deshmukh, R. R. & Annapure, U. S. (2016). Influence of low-pressure cold plasma on cooking and textural properties of brown rice. Innovative Food Science & Emerging Technologies, 37, Part A, 53-60. doi.org/10.1016/j.ifset.2016.08.009

Ugheoke, I. T. & Mamat, O. (2012). A critical assessment and new research directions of rice husk silica processing methods and properties. Maejo International Journal of Science and Technology, 6 (3), 430-448. doi/10.14456/mijst.2012.31

Walter, M., Marchezan, E. & Avila, L. (2008). A. Arroz: composição e características nutricionais. Ciência Rural Online, Santa Maria, 38 (4), 1184-1192. doi.org/10.1590/S0103-84782008000400049

Wu, J., Chen, J., Liu, W., Liu, C., Zhong, Y., Luo, D., Li, Z. & Guo, X. (2016). Effects of aleurone layer on rice cooking: A histological investigation. Food chemistry, 191, 28-35. doi.org/10.1016/j.foodchem.2014.11.058

Xia, Q., Green, B. D., Zhu, Z., Li, Y., Gharibzahedi, S. M. T., Roohinejad, S. & Barba, F. S. (2019). Innovative processing techniques for altering the physicochemical properties of whole grain brown rice (Oryza sativa L.) – opportunities for enhancing food quality and health attributes. Critical Reviews in Food Science and Nutrition, 9 (20), 3349-3370. 10.1080/10408398.2018.1491829.

Yan, X., Liu, C., Huang, A., Chen, R., Chen, J. & Luo, S. (2020). The nutritional components and physicochemical properties of brown rice flour ground by a novel low temperature impact mill. Journal of Cereal Science, 92. doi.org/10.1016/j.jcs.2020.102927

Yao, B. M., Chen, P. & Sun, G. X. (2020). Distribution of elements and their correlation in bran, polished rice, and whole grain. Food Science & Nutrition, 8 (2), 982-992. doi.org/10.1002/fsn3.1379

Yodpitak, S. Mahatheeranont, S., Boonyawan, D., Sookwong, P., Roytrakul, S. & Norkaew, O. (2019). Cold plasma treatment to improve germination and enhance the bioactive phytochemical content of germinated brown rice. Food Chemistry, 289, 328-339. doi.org/10.1016/j.foodchem.2019.03.061

Yu, Y., Pan, F., Ramaswamy, H. S., Zhu, S., Yu, L. & Zhang, Q. (2017). Effect of soaking and single/two cycle high pressure treatment on water absorption, color, morphology, and cooked texture of brown rice. Journal of Food Science and Technology, 54 (6), 1655-1664. 10.1007/s13197-017-2598-4

Yu, Y., Ge, L., Zhu, S., Zhan, Y. & Zhang, Q. (2015). Effect of presoaking high hydrostatic pressure on the cooking properties of brown rice. Journal of Food Science and Technology, 52 (12), doi/10.1007/s13197-015-1901-5

Zhang, G., Malik, V. S., Pan, A., Kumar, S., Holmes, M. D., Spielgeman, D., Lin, X. & Hu, F. B. (2010). Substituting brown rice for white rice to lower diabetes risk: A focus-group study in Chinese adults. Journal of the American Dietetic Association, 110 (8), 1216-1221. doi/10.1016/j.jada.2010.05.004

Zhang, G. & Hamaker, B. R. (2017). The nutritional property of endosperm starch and its contribution to the health benefits of whole grain foods. Critical Reviews in Food Science and Nutrition, 57 (18) 3807-3817. doi/10.1080/10408398.2015.1130685.

Zinoviadou, K. G., Galanakis, C. M., Brncic, M., Grimi, N., Bousseta, N., Mota, M. J., Saraiva, J. A., Patras, A., Tiwari, B. & Barba, F. J. (2015). Fruit juice sonication: Implications on food safety and physicochemical and nutritional properties. Food Research International, 77, 743-752. doi.org/10.1016/j.foodres.2015.05.032

Publicado

14/09/2023

Cómo citar

SOUZA, C. R. C. de; SILVA, L. H. da; COSTA, P. F. P. da. Procesos físicos industriales para reducir el tiempo de cocción del arroz integral - Una revisión. Research, Society and Development, [S. l.], v. 12, n. 9, p. e6112943232, 2023. DOI: 10.33448/rsd-v12i9.43232. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/43232. Acesso em: 22 nov. 2024.

Número

Sección

Ciencias Agrarias y Biológicas