Reemplazo de monensina y virginiamicina por aceites esenciales y ácidos grasos de cadena corta en ganado vacuno confinado a una dieta pura de granos: rendimiento, consumo de materia seca y parámetros ruminales

Autores/as

DOI:

https://doi.org/10.33448/rsd-v12i10.43502

Palabras clave:

Aditivos naturales; Eficiencia energética; Extractos de plantas; Sostenibilidad.

Resumen

El objetivo de este trabajo fue evaluar la sustitución de monensina y virginiamicina por aceites esenciales y ácidos grasos de cadena corta sobre el rendimiento, el consumo de materia seca y los parámetros ruminales en ganado vacuno alimentado con dietas puras de granos. Se utilizaron 36 bovinos machos enteros con una edad promedio de 6 ± 2 meses de edad y 257,2 ± 17,2 kg de peso vivo promedio inicial, divididos en 2 tratamientos: dieta con virginiamicina y monensina y dieta con aceites esenciales y ácidos grasos de cadena corta. Los animales fueron adaptados a dietas puras de cereales en una proporción de 85% de maíz integral y 15% de núcleo de proteína mineral durante 14 días y permanecieron en el periodo experimental durante 98 días. Se realizaron evaluaciones de rendimiento, consumo de materia seca en % de peso vivo, conversión alimenticia, pH fecal, pH ruminal y cantidad de ácidos grasos volátiles en el rumen. El estudio se llevó a cabo en un diseño completamente al azar. Se observó una diferencia en la ganancia diaria promedio (P<0,01) en el período experimental. Para las variables consumo de materia seca en % de peso vivo y conversión alimenticia no se encontraron diferencias significativas (P>0.05). En cuanto a la cantidad de ácidos grasos volátiles solo se encontraron diferencias (P<0.01) para la producción de ácido acético. Con excepción del período de las 22:00 horas, todos los períodos evaluados (06:00; 14:00 y general) mostraron una diferencia significativa (P<0.01) para el pH ruminal. Se concluyó que la sustitución de monensina y virginiamicina por aceites esenciales y ácidos grasos de cadena corta en ganado vacuno alimentado con dietas puras de granos demostró ser eficaz para el rendimiento sin comprometer los parámetros ruminales, lo que podría comprometer la salud del animal.

Citas

ABIEC - Brazilian Associantion of Meat Export Industries (2022). Beef Report: Profile of Livestock in Brazil 2022. https://www.abiec.com.br/publicacoes/beef-report-2022.html

Allen, M. S. et al. (2009). Board invited review: the hepatic oxidation theory of the control of feed intake and its application to ruminants. Journal of Animal Science, 87(10), 3317-3334. 10.2527/jas.2009-1779

Beauchemin, K. A. et al. (2001). Effects of barley grain processing on the site and extent of digestion of beef feedlot finishing diets. Journal of Animal Science, 79(7), 1925-1936. 10.2527/2001.7971925x

Benchaar, C. et al. (2008). A review of plant-derived essential oils in ruminant nutrition and production. Animal Feed Science and Technology, 145(1-4), 209-228. 10.1016/j.anifeedsci.2007.04.014

Bergman, E. N. (1990). Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiological Reviews, 70(2), 567-590. 10.1152/physrev.1990.70.2.567

Bouda, J. et al. (1996). Portable equipment for collection and analysis of ruminal fluid and urine, for diagnosis and treatment of ruminal and metabolic diseases. Proceedings of the XIXth World Buiatrics Congress, Edinburgh.

Calsamiglia, S. et al. (2007). Invited review: Essential oils as modifiers of rumen microbial fermentation. Journal of Dairy Science, 90(6), 2580-2595. 10.3168/jds.2006.644

Campos, F. P. et al. (2004). Feed Analysis Methods. Piracicaba, FEALQ.

Cardozo, P. W. (2006). Effects of alfalfa extract, anise, capsicum, and a mixture of cinnamaldehyde and eugenol on ruminal fermentation and protein degradation in beef heifers fed a high-concentrate diet. Journal Animal Science, 84(10), 2801-2808. 10.2527/jas.2005-593

Carvalho, R. A. (2021). Effect os using an additive based on essential oils on the performance of feedlot cattle. Research and Development Bulletin, 393, 1-24.

Carvalho, J. R. R. et al. (2016). Performance, carcass characteristics, and ruminal pH of Nellore and Angus young bulls fed a whole shelled corn diet. Journal of Animal Science, 94(6), 2451-2459. 10.2527/jas.2015-0162

Channon, A. et al. (2004). Genetic variation in starch digestion in feedlot cattle and its association with residual feed intake. Australian Journal of Experimental Agriculture, 44(5), 469-474. 10.1071/EA02065

Coneglian, S. M. et al. (2019). Effects of essentials oils os cashew and castor on intake, digestibility, ruminal fermentation and purine derivatives in beef cattle fed high grain diets. Semina: Ciências Agrárias, 40(5), 2057-2070. 10.5433/1679-0359.2019v40n5p2057

Cruz, O. T. B. et al. (2014). Effect of glycerine and essential oils (Anacardium occidentale and Ricinus communis) on animal performance, feed efficiency and carcass characteristics of crossbred bulls finished in a feedlot system. Italian Journal of Animal Science, 13(4), 790-797. 10.4081/ijas.2014.3492

Cutrim, E. S. M. et al. (2019). Evaluation of antimicrobial and antioxidant activity of essential oils and hydroalcoholic extracts of zingiber officinale (ginger) and rosmarinus officinalis. Virtual Journal of Chemistry, 11(1), 60-68. 10.21577/1984-6835-20190006

Dehority, B. A. (2003). Rumen microbiology. Nottingham: Nottingham University Press.

Ferro, M. F. et al. (2016). Essential oils in cattle diets. Journal of Agro-environmental Science, 14(2), 110-118. 10.5327/rcaa.v14i2.1602

Fugita, C. A. et al (2012). Corn silage with and without enzyme bacteria inoculants on performance, carcass characteristics and meat quality in feedlot finished crossbred bulls. Brazilian Journal of Animal Science, 41(1), 154-163. 10.1590/S1516-35982012000100023

Geraci, J. I. et al. (2012). Plant extracts containing cinnamaldehyde, eugenol and capsicum oleoresin added to feedlot cattle diets: Ruminal environment, short term intake pattern and animal performance. Animal Feed Science and Technology, 176(1-4), 123-130. 10.1016/j.anifeedsci.2012.07.015

Goodrich, R. D. et al. (1984). Influence of monensin on the performance of cattle. Journal of Animal Science, 58(6), 1484-1498. 10.2527/jas1984.5861484x

Guan, H. et al. (2006). Efficacy of ionophores in cattle diets for mitigation of enteric methane. Journal of Animal Science, 84(7), 1896-1906. 10.2527/jas.2005-652

Hart, K. J. et al. (2008). Plant extracts to manipulate rumen fermentation. Animal Feed Science and Technology, 147(1-3), 8-35. 10.1016/j.anifeedsci.2007.09.007

Hristov, A. N. et al. (2001). Fermentation characteristics and ruminal ciliate protozoal populations in cattle fed medium or high-concentrate barley-based diets. Journal of Animal Science, 79(2), 515-524. 10.2527/2001.792515x

Ireland-Perry, R. L. & Stallings, C. C. (1993). Fecal consistency as related to dietary composition in lactating Holstein cows. Journal Dairy Science, 76(4), 1074-1082. 10.3168/jds.S0022-0302(93)77436-6

Leng, R. A. (1970). Glucose synthesis in ruminants. New York, Academic Press.

Maruta, C. A. & Ortolani, E. L. (2002). Susceptibility of Jersey and Gir steers to rumen lactic acidosis: I – Ruminal and fecal variables. Agricultural Science, 32(1), 55-59. 10.1590/S0103-84782002000100010

Mertens, D. R. (1994). Regulation of Forage Intake. Madison.

Nocek, J. E. & Tamminga, S. (1991). Site of digestion of starch in the gastrointestinal tract of dairy cows and its effect on milk yield and composition. Journal of Dairy Science, 74(10), 3598-3629. 10.3168/jds.S0022-0302(91)78552-4

National Research Council - NRC (2016). Nutrient requirements of beef cattle. Washington, National Academy Press.

Ørskov, E. R. (1982). Protein nutrition in ruminants. London, Academic Press.

Ornaghi, M. G. et al. (2017). Essential oils in the diet of young bulls: Effect on animal performance, digestibility, temperament, feeding behaviour and carcass characteristics. Animal Feed Science and Technology, 234, 274-283. doi.org/10.1016/j.anifeedsci.2017.10.008

Owens, F. N. & Zinn, R. A. (2005). Corn grain for cattle: influence of processing on site and extent of digestion. Tucson, University of Arizona Press.

Owens, F. N. et al. (1998). Acidosis in cattle: a review. Journal of Animal Science, 76(1), 275-286. 10.2527/1998.761275x

Russell, J. B. & Houlihan, A. J. (2003). Ionophore resistance of ruminal bacteria and its potential impact on human health. FEMS Microbiology Reviews, 27(1), 65-74. 10.1016/S0168-6445(03)00019-6

Russell, J. B. & Wilson, D. B. (1996). Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH? Journal of Dairy Science, 79(8), 1503-1509. 10.3168/jds.S0022-0302(96)76510-4

Statistical Analyses System Institute (1999). SAS/STAT user's guide: statistics. Cary.

Turgeon, O. A. et al. (1983). Corn particle size mixtures, roughage level and starch utilization in finishing steer diets. Journal of Animal Science, 57(3), 739-749. 10.2527/jas1983.573739x

Valadares Filho, S. C. et al. (2016). BR-CORTE 3.0. Nutrient Requirements of Zebu and Crossbred Cattle. Visconde do Rio Branco, Suprema Gráfica Ltda.

Descargas

Publicado

17/10/2023

Cómo citar

LOPES, L. S. .; JUNQUEIRA, F. S. .; ARAÚJO, F. F. .; MACHADO, R. S. .; ARAÚJO, P. C. R. . Reemplazo de monensina y virginiamicina por aceites esenciales y ácidos grasos de cadena corta en ganado vacuno confinado a una dieta pura de granos: rendimiento, consumo de materia seca y parámetros ruminales. Research, Society and Development, [S. l.], v. 12, n. 10, p. e125121043502, 2023. DOI: 10.33448/rsd-v12i10.43502. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/43502. Acesso em: 17 jul. 2024.

Número

Sección

Ciencias Agrarias y Biológicas