Revisión bibliográfica de materiales potenciales para la construcción de un colector solar plano alternativo

Autores/as

DOI:

https://doi.org/10.33448/rsd-v13i5.45674

Palabras clave:

Almacenamiento de energía térmica; Uso de energía solar; Fuentes de energía renovables; Colector solar plano.

Resumen

Esta revisión de la literatura habla sobre las energías nuevas y renovables para el desarrollo sostenible. Aborda la necesidad de identificar materiales alternativos asequibles para la construcción de colectores solares planos para su uso en hogares en áreas rurales y urbanas. Investiga el potencial de la energía solar existente en Mozambique para su uso en el calentamiento de agua con la integración de sistemas de almacenamiento de energía térmica que se están investigando actualmente. El estudio destaca la necesidad del aprovechamiento de la radiación solar para el calentamiento del agua con el fin de reducir el consumo eléctrico y reducir los impactos ambientales mediante el aprovechamiento intensivo de la biomasa leñosa. A través del método exploratorio, se discute el potencial de materiales alternativos para la construcción de colectores solares térmicos de placa plana a partir de material para techos, estructura, absorbente, tuberías y material de almacenamiento de calor. La revisión presenta los puntos a considerar en la elección de materiales alternativos de acuerdo con sus propiedades termofílicas, costos y disponibilidad en el mercado mozambiqueño en el contexto de la industrialización.

Citas

Adeyanju, A. A. (2015). Thermal Energy Storage Techniques; Sci-Afric Journal of Scientific Issues, Research and Essays 3(5), 26-736http://www.sci-africpublishers.org.

Akbar, M. A.; Manzoor, T.; Danaish et al. (2022) - thermal analysis of flat plate solar collector for different temperature variations. International Journal Energy Water Res 6, 315–321 (2022). https://doi.org/10.1007/s42108-021-00177-7.

Alghoul, M. A.; Sulaiman, M.Y.; Azmi, B.Z.; Wahab, M. (2005). Review of materials for solar thermal collectors. Anti-Corrosion Methods and Materials. 52 (4); 199–206. 10.1108/00035590510603210.

Amrizal, A., Ahmad Yonanda, Z.. (2017). Comparison Study of Solar Flat Plate Collector with Two Different Absorber Materials. Proceedings of the 1st Faculty of Industrial Technology International Congress. Bandung, Indonesia: Universitas Lampung1Bandung, Indonesia: Universitas Lampung.

Arthur, F., Nhumaio, G., Saide, A. and Cumbe, F. (2015) Solar Thermal Technology Roadmap for Mozambique. Scientific research an academic publisher; 1-27.

Bittar, A. (2013). Solar Selective Coatings: Current Status and Future Trends. Source: International Workshop on Design of Sub-Systems for CSP Technologies, IIT Jodhpur, 19-21. iitj.ac.in/CSP/material/19dec/selective.pdf.

Chichango, F., & Cristóvão, L. (2021). Mozambique Solar Thermal Energy Technologies: Current Status and Future Trends. Journal of Energy Technologies and Policy, 11(5);13-17. 10.7176/JETP/11-5-02.

Chichango, F., & Cristóvão, L. (2024). Review of literature on methods and processes to produce bioethanol from banana peels for disinfection and sanitation of the environment in communities, central region of Mozambique. Research, Society and Development, 13(3), e12713344921-e12713344921.

Chichango, F., Cristóvão, L., & Mahanuque, O. (2023a). Empowering women through vocational training: Evidence from rural areas affected by armed conflict in Mozambique. Research, Society and Development, 12(14), e108121441196-e108121441196.

Chichango, F., Cristóvão, L., Muguirima, P. & Grande, S. (2023). Solar Dryer Technologies for Agricultural Products in Mozambique: An Overview. Research, Society and Development 12(4): e6812439850.

Chichango, F.; Meque, P.; Cristóvão, L. (2021) Reabilitação das Centrais de Chicamba e Mavuzi. Scientific Journal of Mathematics, Natural and Applied Science- Munyo, 4(2); 53 – 63.

Cristóvão, L., Chichango, F., Massinga, P.H., & Macanguisse, J. (2021). The Potential of Renewable Energy in Mozambique: An Overview. Journal of Energy Technologies and Policy. 11(5) 13-17. 10.7176/JETP/11-5-02.

Douvi, E., Pagkalos, C., Dogkas, G., Koukou, M. K., Stathopoulos, V. N., Caouris, Y., & Vrachopoulos, M. G. (2021). Phase change materials in solar domestic hot water systems: A review. International Journal of Thermofluids, 10, 100075.

Duffie J. A. and Beckman W. A. (2013). Solar Engineering of Thermal Processes. 4ed, pp928. John Wiley & Sons, Inc., Hoboken, New Jersey.

Evangelisti, L., Vollaro, R. D. L., & Asdrubali, FLatest advances on solar thermal collectors: A comprehensive review. Renewable and Sustainable Energy Reviews, 114, 109318.

Farulla, G.A.; Cellura, M.; Guarino, F.; Ferraro, M. (2020). A Review of Thermochemical Energy Storage Systems for Power Grid Support; Appl. Sci. 10, 3142. 10.3390/app10093142,

Fedkin, M. (2024). EME 811: Solar Thermal Energy for Utilities and Industry. Pennsylvania State University. Retrieved from e-education.psu.edu/eme811.

Galvão, M. C. B., & Ricarte, I. L. M. (2019). Revisão sistemática da literatura: Conceituação, produção e publicação1. Logeion: Filosofia da Informação, 6(1), 57-73. https://doi.org/10.21728/logeion.2019v6n1.p57-73.

Ganjoo, A., McCamy, J., Polcyn, A., Ma, Z., Medwick, P.A. (2019). Glass and Coatings on Glass for Solar Applications. In: Musgraves, J.D., Hu, J., Calvez, L. (eds) Springer Handbook of Glass. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-93728-1_48.

Garg, H. P. (1986). Absorber Plate Configuration and Optimization. In: Garg, H.P. (eds) Solar Water Heating Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5480-9_7.

Gary. (2008). The Renewable Energy site for Do-It-yourselves Available in line in Build It Solar: Solar energy projects for Do It Yourselves to save money and reduce pollution (accessed Mach 2nd,2024).

Gorgolis, G., & Karamanis, D. (2016). Solar energy materials for glazing technologies. Solar Energy Materials and Solar Cells, 144, 559-578.

Gunreddy, N.; Mulamalla, A.R.; Duraisamy, S.; Sivan, S.; Poongavanam, G. K., & Kumar, B. (2022). Conductive and convective heat transfer augmentation in flat plate solar collector from energy, economic and environmental perspectives — a comprehensive review. Environmental Science and Pollution Research, 29(87019-87067) .

Laskar, S. (eds) Emerging Technologies for Smart Cities. Lecture Notes in Electrical Engineering, vol 765. Springer, Singapore. https://doi.org/10.1007/978-981-16-1550-4_21.

MacDonald, T. H (1951). Some Characteristics of the Eppley Pyrheliometer, Monthly Weather Rev., 79(8), 153.

Medyk, A. B.; Mendes, A. S.; Libório, L. G. & Martimbianco, A. L. C. (2022). Systematic reviews. Students for Better Evidence. Cochrane. Available at: [Systematic reviews - Students for Better Evidence (cochrane.org)].

Meque, R., Cristóvão, L. & Chichango, F. (2023). Socio-Environmental Impacts Caused by Tropical Cyclones Idai and Eloise in Sussundenga District, Mozambique. Research, Society and Development 12(14): e 72121440818. 10.33448/rsd-v12i14.40818.

Modernize (February 12th , 2024) Available [online] https://modernize.com/homeowner-resources/solar/passive-versus-active-solar-hot-water-heaters.

Ogueke, V.N.; Anyanwu, E.E.; Ekechukwu, V. (2009). A review of solar water heating systems. Journal of Renewable and Sustainable Energy 1, 043106 (2009). 1704310617. 10.1063/1.3167285

.

Rojas, P. R. (2021). Home Solar Water Heater, https://www.misolarcasero.com/en/

Sadhishkumar S. & Balusamy. T. (2014). Performance improvement in solar water heating systems—A review. Renewable and Sustainable Energy Reviews, 37; P191-198. https://doi.org/10.1016/j.rser.2014.04.072.

Sakhaei, S. A., & Valipour, M. S. (2019). Performance enhancement analysis of the flat plate collectors: a comprehensive review. Renewable and Sustainable Energy Reviews, 102, 186-204.

Sarma, D., Barua, P. B., Rabha, D.K., Verma, N., Purkayastha, S., Das, S. (2021). Flat Plate Solar Thermal Collectors—A Review. In: Bora, P.K., Nandi, S.

Sharma, P., Torralba, A., & Andreas, J. (2022). Skill Induction and Planning with Latent LanguageProceedingsLanguage Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 1713–1726.

Thakur, A., Kumar, S., Kumar, P., Kumar, S., & Bhardwaj, A. KA review on the simulation/CFD based studies on the thermal augmentation of flat plate solar collectors. Materials Today: Proceedings, 46, 8578-8585.

Tian, Y. (Yuan) and Zhao, Changying (2013). A review of solar collectors and thermal energy storage in solar thermal applications. Applied Energy, 104, 538-553. 10.1016/j.apenergy.2012.11.051.

Tripathi, M., Chauhan, P. S., Amar, A. K., & Tiwari, S. K. (2018). Solar Thermal Collector Materials–A Review. International Journal of Thermal Energy and Applications, 4(1).

Universe today (2013). Space and astronomy news available online: Seasons1.svg_.png (800×469) (d1jqu7g1y74ds1.cloudfront.net). University of California Natural Reserve System, UCSB (2024). Indirect solar hot water system.

Variava J. & Bhavsar A. (2017). Review of renewable energy the solar water heater system. International Journal of Advance Research Andand Innovative Ideas In Education. 3(1 2017):7.

VQuaschning (2004). Solar thermal water heating Technology Fundamentals published in Renewable Energy World February 2th, pp. 95-99 https://www.volker-quaschning.de/articles/fundamentals4/index.php.

Wang, K., Qin, Z., Tong, W., & Ji, C. (2020). Thermal Energy Storage for Solar Energy Utilization: Fundamentals and Applications. In M. Al Qubeissi, A. El-Kharouf, & H. S. Soyhan (Eds.), Renewable Energy - Resources, Challenges and Applications (pp. 1-22). IntechOpenIntech Open. 10.5772/intechopen.91804.

Weiss, W. & Dur, M. S. (2019). Solar heat wouldwide. Global Market Development and Trends in 2018, Detailed Market Figures 2017, p. 83.

Wojcicki, D. J. (2015). The application of the Typical Day Concept in flat plate solar collector models. Renewable and Sustainable Energy Reviews, 49, 968-974.

Zaboli, M.; Saedodin, S.; Ajarostaghi, S.S.M. et al. (2023). Recent progress on flat plate solar collectors equipped with nanofluid and turbulator: state of the art. Environ Sci Pollut Res 30, 109921–109954. https://doi.org/10.1007/s11356-023-29815-9.

Zheng, J.; Febrer, R.; Castro, J.; Kizildag, D.; Rigola, J. (2024). A new high-performance flat plate solar collector. Numerical modelling and experimental validation. Applied Energy: 35, 1-14: www.elsevier.com/locate/apenergy.

Descargas

Publicado

03/05/2024

Cómo citar

CHICHANGO, F. .; CRISTÓVÃO, L. .; NHAMBIU, J. .; CUMBE, F. .; MAVANGA, G. G. Revisión bibliográfica de materiales potenciales para la construcción de un colector solar plano alternativo. Research, Society and Development, [S. l.], v. 13, n. 5, p. e0513545674, 2024. DOI: 10.33448/rsd-v13i5.45674. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/45674. Acesso em: 6 ene. 2025.

Número

Sección

Ingenierías