Microalgas (Schizochytrium limacinum) para novillos carniceros eleva el contenido de omega-3 en la carne

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i7.4568

Palabras clave:

Ácidos grasos; Canal; Ganado vacuno.

Resumen

Nuevas opciones son necesarias para incremento de ácidos gordos polinsaturados en la carne. Los complementos alimenticios como las microalgas son una estrategia para enriquecer la carne con omega 3. Así, el objetivo del estudio fue evaluar el rendimiento, el perfil de ácidos gordos (AG) de las características de la carne y el canal de novillos suplementados con microalgas en la dieta. Dieciséis novillos (peso promedio 299.6 ± 7.4 kg) fueron repartidos aleatoriamente en dos grupos: el grupo control (CTL) y el grupo de microalgas (ALG; 1.7% de materia seca). La dieta (40% de ensilaje de maíz y 60% de concentrado) se ofreció dos veces al día por 84 días. La suplementación con microalgas aumentó 4,44 veces los ácidos gordos omega-3 en el músculo torácico y lumbar Longissimus, y redujo la relación omega 6: omega-3 en 3,6 veces. Las concentraciones de 20: 5n3 y 22: 6n3 aumentaron 7 y 20.5 veces, respectivamente, con la adición de microalgas. Sin embargo, las microalgas disminuyeron el consumo de materia seca en un 16.5% (P <0.0001), el 19.1% de la ganancia diaria promedio (P = 0.035) y aún, el 5.5% de la capacidad de retención de agua muscular (P = 0.02). El empleo de microalgas reduce el rendimiento, pero no altera las características del canal y tiene el potencial de mejorar el perfil de AG de la serie omega 3. Los consumidores pueden sentirse atraídos por aumentar la ingesta de grasas poliinsaturadas omega 3 de carne bovina. Estos resultados pueden respaldar la decisión de los nutricionistas o productores cuando usan microalgas en el ganado vacuno, siempre que sea económicamente viable.

Citas

Abularach, M. L. S., Rocha, C. E., & de Felício, P. E. (1998). Características de qualidade do contrafilé (M. L. dorsi) de touros jovens da raça Nelore. Food Science and Technology, 18(2), 205-210.

Altomonte, I., Salari, F., Licitra, R., & Martini, M. (2018). Use of microalgae in ruminant nutrition and implications on milk quality–A review. Livestock Science, 214, 25-35.

Andrade, P. L., Bressan, M. C., Gama, L. T. D., Gonçalves, T. D. M., Ladeira, M. M., & Ramos, E. M. (2010). Qualidade da carne maturada de bovinos Red Norte e Nelore. Revista Brasileira de Zootecnia, 39(8), 1791-1800.

Azrad, M., Turgeon, C. E., & Demark-Wahnefried, W. (2013). Current evidence linking polyunsaturated fatty acids with cancer risk and progression. Frontiers in Oncology, 3, 224.

Borghi, T. H. (2018). Farinha de algas marinhas (Schizochytrium sp.) na alimentação de cordeiros confinados: desempenho, digestibilidade e qualidade da carcaça e da carne. Thesis (Faculdade de Ciências Agrárias e Veterinárias) – Universidade Estadual Paulista (UNESP), Jaboticabal, São Paulo.

Burnett, V. F., Norng, S., Seymour, G. R., Jacobs, J. L., & Ponnanpalam, E. N. (2012). Daily feed intake and growth rate of lambs fed on annual pasture hay with supplements of flaxseed or algae. In The 2nd Australian and New Zealand Societies of Animal Production Joint Conference, Lincoln University, New Zealand, 2–5 July 2012 (p. 8).

Carvalho, J. R. R., Brennan, K. M., Ladeira, M. M., & Schoonmaker, J. P. (2018). Performance, insulin sensitivity, carcass characteristics, and fatty acid profile of beef from steers fed microalgae. Journal of Animal Science, 96(8), 3433-3445.

Clayton, E. H., Lamb, T. A., Refshauge, G., Kerr, M. J., Bailes, K. L., Ponnampalam, E. N., ... & Hopkins, D. L. (2014). Differential response to an algae supplement high in DHA mediated by maternal periconceptional diet: intergenerational effects of n-6 fatty acids. Lipids, 49(8), 767-775.

Das, U. N. (2006). Biological significance of essential fatty acids. Journal-Association Of Physicians of India, 54(R), 309.

Das, U. N. (2008). Can essential fatty acids reduce the burden of disease (s)?. Lipids in Health and Disease, 7(1), 9.

De la Fuente Vázquez, J., Díaz-Chirón, M. T. D., Marcos, C. P., Martínez, V. C., González, C. I. S., Acero, I. A., ... & Gómez, S. L. (2014). Linseed, microalgae or fish oil dietary supplementation affects performance and quality characteristics of light lambs. Spanish Journal of Agricultural Research, (2), 436-477.

Díaz, M. T., Pérez, C., Sánchez, C. I., Lauzurica, S., Cañeque, V., González, C., & De La Fuente, J. (2017). Feeding microalgae increases omega 3 fatty acids of fat deposits and muscles in light lambs. Journal of Food Composition and Analysis, 56, 115-123.

Dierick, N., Ovyn, A., & De Smet, S. (2010). In vitro assessment of the effect of intact marine brown macro-algae Ascophyllum nodosum on the gut flora of piglets. Livestock Science, 133(1-3), 154-156.

Faustman, C., & Cassens, R. G. (1990). The biochemical basis for discoloration in fresh meat: a review. Journal of Muscle Foods, 1(3), 217-243.

Fernandes, A. R. M., Sampaio, A. A. M., Henrique, W., Oliveira, E. A., Tullio, R. R., & Perecin, D. (2008). Características da carcaça e da carne de bovinos sob diferentes dietas, em confinamento. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 60(1), 139-147.

Fike, J. H., Allen, V. G., Schmidt, R. E., Zhang, X., Fontenot, J. P., Bagley, C. P., ... & Wester, D. B. (2001). Tasco-Forage: I. Influence of a seaweed extract on antioxidant activity in tall fescue and in ruminants. Journal of Animal Science, 79(4), 1011-1021.

Fraeye, I., Bruneel, C., Lemahieu, C., Buyse, J., Muylaert, K., & Foubert, I. (2012). Dietary enrichment of eggs with omega-3 fatty acids: A review. Food Research International, 48(2), 961-969.

Folch, J., Lees, M., & Stanley, G. S. (1957). A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry, 226(1), 497-509.

Hamm R (1986) Functional properties of the miofibrillar system and their measurement. In: ‘BECHTEL, P.J. (Ed.). Muscle as food’. Orlando: Academic Press, 135-199.

Jenkins, T. C., Wallace, R. J., Moate, P. J., & Mosley, E. E. (2008). Board-invited review: Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. Journal of Animal Science, 86(2), 397-412.

Kramer, J. K., Fellner, V., Dugan, M. E., Sauer, F. D., Mossoba, M. M., & Yurawecz, M. P. (1997). Evaluating acid and base catalysts in the methylation of milk and rumen fatty acids with special emphasis on conjugated dienes and total trans fatty acids. Lipids, 32(11), 1219-1228.

Kovač, D. J., Simeunović, J. B., Babić, O. B., Mišan, A. Č., & Milovanović, I. L. (2013). Algae in food and feed. Food and Feed Research, 40(1), 21-32.

Ladeira, M. M., & Oliveira, R. L. (2007). Desafios nutricionais para melhoria da qualidade da carne bovina. Bovinocultura de corte: desafios e tecnologias. Salvador: EDUFBA, 183-210.

Lamminen, M., Halmemies-Beauchet-Filleau, A., Kokkonen, T., Jaakkola, S., & Vanhatalo, A. (2019). Different microalgae species as a substitutive protein feed for soya bean meal in grass silage based dairy cow diets. Animal Feed Science and Technology, 247, 112-126.

Lee, S., Decker, E. A., Faustman, C., & Mancini, R. A. (2005). The effects of antioxidant combinations on color and lipid oxidation in n− 3 oil fortified ground beef patties. Meat Science, 70(4), 683-689.

Meale, S. J., Chaves, A. V., He, M. L., & McAllister, T. A. (2014). Dose–response of supplementing marine algae (Schizochytrium spp.) on production performance, fatty acid profiles, and wool parameters of growing lambs. Journal of Animal Science, 92(5), 2202-2213.

Moran, C. A., Fusconi, G., Morlacchini, M., & Jacques, K. A. (2017). Changes in docosahexaenoic acid (DHA) content in longissimus dorsi and backfat tissue of finishing pigs given diets containing 1% heterotrophically grown algae during the last 28 days. Journal of Animal Science, 95, 59.

Muchenje, V., Dzama, K., Chimonyo, M., Strydom, P. E., Hugo, A., & Raats, J. G. (2009). Some biochemical aspects pertaining to beef eating quality and consumer health: A review. Food Chemistry, 112(2), 279-289.

Pardi, M. C., dos Santos, I. F., de Souza, E. R., & Pardi, H. S. (1993). Ciência, higiene e tecnologia da carne (Vol. 1). CEGRAF-UFG.

Phelps, K. J., Drouillard, J. S., O'Quinn, T. G., Burnett, D. D., Blackmon, T. L., Axman, J. E., ... & Gonzalez, J. M. (2016). Feeding microalgae meal (All-G Rich™; Schizochytrium limacinum CCAP 4087/2) to beef heifers. I: Effects on longissimus lumborum steak color and palatibility. Journal of Animal Science, 94(9), 4016-4029.

Ścieszka, S., & Klewicka, E. (2019). Algae in food: A general review. Critical Reviews in Food Sscience and Nutrition, 59(21), 3538-3547.

Shingfield, K. J., Bonnet, M., & Scollan, N. D. (2013). Recent developments in altering the fatty acid composition of ruminant-derived foods. Animal, 7(s1), 132-162.

Tsiplakou, E., Abdullah, M. A. M., Skliros, D., Chatzikonstantinou, M., Flemetakis, E., Labrou, N., & Zervas, G. (2017). The effect of dietary C hlorella vulgaris supplementation on micro‐organism community, enzyme activities and fatty acid profile in the rumen liquid of goats. Journal of Animal Physiology and Animal Nutrition, 101(2), 275-283.

Urrutia, O., Mendizabal, J. A., Insausti, K., Soret, B., Purroy, A., & Arana, A. (2016). Effects of addition of linseed and marine algae to the diet on adipose tissue development, fatty acid profile, lipogenic gene expression, and meat quality in lambs. PloS one, 11(6).

Wheeler, T. L., Shackelford, S. D., & Koohmaraie, M. (2001). Shear force procedures for meat tenderness measurement. Roman L. Hruska US Marc. USDA, Clay Center, NE.

Woods, V. B., & Fearon, A. M. (2009). Dietary sources of unsaturated fatty acids for animals and their transfer into meat, milk and eggs: A review. Livestock Science, 126(1-3), 1-20.

Descargas

Publicado

02/06/2020

Cómo citar

DEMEDA, M. A.; TOMALUSKI, C. R.; BAGGIO, C.; MATEUS, K. A.; PETROLLI, T. G.; MUELLER, L. F.; PEREIRA, A. S. C.; GRIEBLER, L.; ZOTTI, C. A. Microalgas (Schizochytrium limacinum) para novillos carniceros eleva el contenido de omega-3 en la carne. Research, Society and Development, [S. l.], v. 9, n. 7, p. e675974568, 2020. DOI: 10.33448/rsd-v9i7.4568. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/4568. Acesso em: 30 jun. 2024.

Número

Sección

Ciencias Agrarias y Biológicas