Actividad antibacteriana del disulfuro de molibdeno y nanopartículas de plata verde reducidas por compuestos de aceite esencial de melaleuca
DOI:
https://doi.org/10.33448/rsd-v13i5.45818Palabras clave:
Melaleuca; Nanopartículas de plata; Disulfuro de molibdeno; Antibacteriano.Resumen
La creciente resistencia de los microorganismos frente a los antibióticos pone en riesgo al ser humano. Este evento requiere el desarrollo urgente de estrategias para la producción de agentes antibacterianos alternativos. La combinación de nanopartículas de plata verde (reducidas por aceite esencial) y disulfuro de molibdeno se puede explorar de forma sinérgica dada la interacción de los componentes. En este documento, se informa la respuesta de los componentes aislados y combinados con la resultante cinética sobresaliente de tiempo de muerte (eliminación completa de Staphylococcus aureus y Escherichia coli después de cuatro horas de contacto), acción efectiva contra la formación de biopelículas (~99% de inhibición en la biopelícula formación). Estos resultados confirman que la intercalación de nanopartículas de plata entre láminas exfoliadas de MoS2 representa una estrategia prometedora para desarrollar agentes antibacterianos eficientes contra bacterias Gram positivas y Gram negativas.
Citas
Agnihotri, S., & Dhiman, N. K. (2017). Development of Nano-Antimicrobial Biomaterials for Biomedical Applications (pp. 479–545). https://doi.org/10.1007/978-981-10-3328-5_12
Anderson, K., Poulter, B., Dudgeon, J., Li, S.-E., & Ma, X. (2017). A Highly Sensitive Nonenzymatic Glucose Biosensor Based on the Regulatory Effect of Glucose on Electrochemical Behaviors of Colloidal Silver Nanoparticles on MoS2. Sensors, 17(8), 1807. https://doi.org/10.3390/s17081807
Awasthi, G. P., Adhikari, S. P., Ko, S., Kim, H. J., Park, C. H., & Kim, C. S. (2016). Facile synthesis of ZnO flowers modified graphene like MoS2 sheets for enhanced visible-light-driven photocatalytic activity and antibacterial properties. Journal of Alloys and Compounds, 682, 208–215. https://doi.org/10.1016/j.jallcom.2016.04.267
Bharadwaj, K. K., Rabha, B., Pati, S., Choudhury, B. K., Sarkar, T., Gogoi, S. K., Kakati, N., Baishya, D., Kari, Z. A., & Edinur, H. A. (2021). Green Synthesis of Silver Nanoparticles Using Diospyros malabarica Fruit Extract and Assessments of Their Antimicrobial, Anticancer and Catalytic Reduction of 4-Nitrophenol (4-NP). Nanomaterials, 11(8), 1999. https://doi.org/10.3390/nano11081999
Bodík, M., Annušová, A., Hagara, J., Mičušík, M., Omastová, M., Kotlár, M., Chlpík, J., Cirák, J., Švajdlenková, H., Anguš, M., Roldán, A. M., Veis, P., Jergel, M., Majkova, E., & Šiffalovič, P. (2019). An elevated concentration of MoS 2 lowers the efficacy of liquid-phase exfoliation and triggers the production of MoO x nanoparticles. Physical Chemistry Chemical Physics, 21(23), 12396–12405. https://doi.org/10.1039/C9CP01951K
Bruna, T., Maldonado-Bravo, F., Jara, P., & Caro, N. (2021). Silver Nanoparticles and Their Antibacterial Applications. International Journal of Molecular Sciences, 22(13), 7202. https://doi.org/10.3390/ijms22137202
CLSI. (2019). Performance Standards for Antimicrobial Susceptibility Testing. 29th ed. CLSI supplement M100. Performance Standards for Antimicrobial Susceptibility Testing. 29th Ed. CLSI Supplement M100, 296.
Dadgostar, P. (2019). Antimicrobial Resistance: Implications and Costs. Infection and Drug Resistance, Volume 12, 3903–3910. https://doi.org/10.2147/IDR.S234610
Eda, G., Yamaguchi, H., Voiry, D., Fujita, T., Chen, M., & Chhowalla, M. (2011). Photoluminescence from Chemically Exfoliated MoS 2. Nano Letters, 11(12), 5111–5116. https://doi.org/10.1021/nl201874w
Feng, X., Xing, W., Song, L., & Hu, Y. (2014). In situ synthesis of a MoS 2 /CoOOH hybrid by a facile wet chemical method and the catalytic oxidation of CO in epoxy resin during decomposition. Journal of Materials Chemistry A, 2(33), 13299. https://doi.org/10.1039/C4TA01885K
Guimarães, M.L., da Silva, F. A. G., da Costa, M. M., & de Oliveira, H. P. (2020). Green synthesis of silver nanoparticles using Ziziphus joazeiro leaf extract for production of antibacterial agents. Applied Nanoscience (Switzerland), 10(4). https://doi.org/10.1007/s13204-019-01181-4
Guimarães, Milena Lima, & Amarante, J. F. (2021). A importância dos óleos essenciais na síntese verde de nanopartículas metálicas The importance of essential oils in the green synthesis of metallic nanoparticles.
Guimarães, Milena Lima, Amarante, J. F., & Oliveira, H. P. de. (2021). A importância dos óleos essenciais na síntese verde de nanopartículas metálicas. Matéria (Rio de Janeiro), 26(3). https://doi.org/10.1590/s1517-707620210003.1305
Guimarães, Milena Lima, da Silva, F. A. G., de Souza, A. M., da Costa, M. M., & de Oliveira, H. P. (2022a). All-green wound dressing prototype based on Nile tilapia skin impregnated with silver nanoparticles reduced by essential oil. Applied Nanoscience, 12(2), 129–138. https://doi.org/10.1007/s13204-021-02249-w
Guimarães, Milena Lima, da Silva, F. A. G., de Souza, A. M., da Costa, M. M., & de Oliveira, H. P. (2022b). All-green wound dressing prototype based on Nile tilapia skin impregnated with silver nanoparticles reduced by essential oil. Applied Nanoscience 2021 12:2, 12(2), 129–138. https://doi.org/10.1007/S13204-021-02249-W
Guimarães, Milena Lima, Silva Jr, F. A. G., Costa, M. M., & Oliveira, H. P. (2019). Green synthesis of silver nanoparticles using Ziziphus joazeiro leaf extract for production of antibacterial agents. Applied Nanoscience, 0123456789. https://doi.org/10.1007/s13204-019-01181-4
Huang, W., Nie, Y., Zhu, N., Yang, Y., Zhu, C., Ji, M., Wu, D., & Chen, K. (2020). Hybrid Label-Free Molecular Microscopies for Simultaneous Visualization of Changes in Cell Wall Polysaccharides of Peach at Single- and Multiple-Cell Levels during Postharvest Storage. Cells, 9(3), 761. https://doi.org/10.3390/cells9030761
Ikram, M., Tabassum, R., Qumar, U., Ali, S., Ul-Hamid, A., Haider, A., Raza, A., Imran, M., & Ali, S. (2020). Promising performance of chemically exfoliated Zr-doped MoS 2 nanosheets for catalytic and antibacterial applications. RSC Advances, 10(35), 20559–20571. https://doi.org/10.1039/D0RA02458A
LEVY, S. (2005). Antibiotic resistance—the problem intensifies. Advanced Drug Delivery Reviews, 57(10), 1446–1450. https://doi.org/10.1016/j.addr.2005.04.001
Levy, S. B. (1998). The Challenge of Antibiotic Resistance. Scientific American, 278(3), 46–53. https://doi.org/10.1038/scientificamerican0398-46
Li, J., Tang, W., Yang, H., Dong, Z., Huang, J., Li, S., Wang, J., Jin, J., & Ma, J. (2014). Enhanced-electrocatalytic activity of Ni 1−x Fe x alloy supported on polyethyleneimine functionalized MoS 2 nanosheets for hydrazine oxidation. RSC Adv., 4(4), 1988–1995. https://doi.org/10.1039/C3RA42757A
Maciel, M. V. de O., Almeida, A. da R., Machado, M. H., Melo, A. P. Z., Rosa, C. G. da, Freitas, D. Z., Noronha, Carolina Montanheiro Teixeira, G. L., Armas, R. D., & Barreto, P. L. M. (2019). Syzygium aromaticum L . ( Clove ) Essential Oil as a Reducing Agent for the Green Synthesis of Silver Nanoparticles. Open Journal of Applied Sciences, 45–54. https://doi.org/10.4236/ojapps.2019.92005
Mak, K. F., Lee, C., Hone, J., Shan, J., & Heinz, T. F. (2010). Atomically Thin MoS 2 : A New Direct-Gap Semiconductor. Physical Review Letters, 105(13), 136805. https://doi.org/10.1103/PhysRevLett.105.136805
Melo, A. P. Z., Maciel, M. V. de O. B., Sganzerla, W. G., Almeida, A. de R., Armas, R. D., Machado, M. H., Rosa, C. G., Nunes, R. M., Bertoldi, F. C. B., & Barreto, P. L. M. (2020). Antibacterial activity , morphology , and physicochemical stability of biosynthesized silver nanoparticles using thyme ( Thymus vulgaris ) essential oil Antibacterial activity , morphology , and physicochemical stability of biosynthesized silver nanoparti. Materials Research Express, 015087. https://doi.org/https://doi.org/10.1088/2053-1591/ab6c63
Mohan, M., Unni, K. N. N., & Rakhi, R. B. (2019). 2D organic-inorganic hybrid composite material as a high-performance supercapacitor electrode. Vacuum, 166, 335–340. https://doi.org/10.1016/j.vacuum.2018.10.051
More, P. R., Pandit, S., Filippis, A. De, Franci, G., Mijakovic, I., & Galdiero, M. (2023). Silver Nanoparticles: Bactericidal and Mechanistic Approach against Drug Resistant Pathogens. Microorganisms, 11(2), 369. https://doi.org/10.3390/microorganisms11020369
Nam, G., Rangasamy, S., Purushothaman, B., & Song, J. M. (2015). The Application of Bactericidal Silver Nanoparticles in Wound Treatment. Nanomaterials and Nanotechnology, 5, 23. https://doi.org/10.5772/60918
Nehme, R., Andrés, S., Pereira, R. B., Ben Jemaa, M., Bouhallab, S., Ceciliani, F., López, S., Rahali, F. Z., Ksouri, R., Pereira, D. M., & Abdennebi-Najar, L. (2021). Essential Oils in Livestock: From Health to Food Quality. Antioxidants, 10(2), 330. https://doi.org/10.3390/antiox10020330
Roy, S., Mondal, A., Yadav, V., Sarkar, A., Banerjee, R., Sanpui, P., & Jaiswal, A. (2019). Mechanistic Insight into the Antibacterial Activity of Chitosan Exfoliated MoS 2 Nanosheets: Membrane Damage, Metabolic Inactivation, and Oxidative Stress. ACS Applied Bio Materials, 2(7), 2738–2755. https://doi.org/10.1021/acsabm.9b00124
Shaheen, H. M. (2016). Wound healing and silver nanoparticles. Global Drugs and Therapeutics, 1(1). https://doi.org/10.15761/GDT.1000105
Vinicius de Oliveira Brisola Maciel, M., da Rosa Almeida, A., Machado, M. H., Elias, W. C., Gonçalves da Rosa, C., Teixeira, G. L., Noronha, C. M., Bertoldi, F. C., Nunes, M. R., Dutra de Armas, R., & Manique Barreto, P. L. (2020). Green synthesis, characteristics and antimicrobial activity of silver nanoparticles mediated by essential oils as reducing agents. Biocatalysis and Agricultural Biotechnology, 28, 101746. https://doi.org/10.1016/j.bcab.2020.101746
Wei, C., Ma, Z., Qiao, J., Lin, J., & Li, G. (2020). Effects of different drying methods on volatile composition of Melaleuca alternifolia essential oil. IOP Conference Series: Earth and Environmental Science, 559(1), 012010. https://doi.org/10.1088/1755-1315/559/1/012010
Winchester, A., Ghosh, S., Feng, S., Elias, A. L., Mallouk, T., Terrones, M., & Talapatra, S. (2014). Electrochemical Characterization of Liquid Phase Exfoliated Two-Dimensional Layers of Molybdenum Disulfide. ACS Applied Materials & Interfaces, 6(3), 2125–2130. https://doi.org/10.1021/am4051316
Yılmaz, G. E., Göktürk, I., Ovezova, M., Yılmaz, F., Kılıç, S., & Denizli, A. (2023). Antimicrobial Nanomaterials: A Review. Hygiene, 3(3), 269–290. https://doi.org/10.3390/hygiene3030020
Zhang, Weiwei, Kuang, Z., Song, P., Li, W., Gui, L., Tang, C., Tao, Y., Ge, F., & Zhu, L. (2022). Synthesis of a Two-Dimensional Molybdenum Disulfide Nanosheet and Ultrasensitive Trapping of Staphylococcus Aureus for Enhanced Photothermal and Antibacterial Wound-Healing Therapy. Nanomaterials, 12(11), 1865. https://doi.org/10.3390/nano12111865
Zhang, Wentao, Shi, S., Wang, Y., Yu, S., Zhu, W., Zhang, X., Zhang, D., Yang, B., Wang, X., & Wang, J. (2016). Versatile molybdenum disulfide based antibacterial composites for in vitro enhanced sterilization and in vivo focal infection therapy. Nanoscale, 8(22), 11642–11648. https://doi.org/10.1039/C6NR01243D
Zhao, Y., Jia, Y., Xu, J., Han, L., He, F., & Jiang, X. (2021). The antibacterial activities of MoS 2 nanosheets towards multi-drug resistant bacteria. Chemical Communications, 57(24), 2998–3001. https://doi.org/10.1039/D1CC00327E
Zhou, K.-G., Mao, N.-N., Wang, H.-X., Peng, Y., & Zhang, H.-L. (2011). A Mixed-Solvent Strategy for Efficient Exfoliation of Inorganic Graphene Analogues. Angewandte Chemie International Edition, 50(46), 10839–10842. https://doi.org/10.1002/anie.201105364
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Carlos Alves do Nascimento Filho; Fernando Antonio Gomes da Silva Jr ; Mateus Matiuzzi da Costa; Helinando Pequeno de Oliveira
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.