Definiendo criterios de viabilidad geológica para el almacenamiento de CO2 e hidrógeno en campos de petróleo y gas agotados
DOI:
https://doi.org/10.33448/rsd-v13i8.46130Palabras clave:
Almacenamiento de hidrógeno; Almacenamiento de CO2; Campos de petróleo y gas agotados; Almacenamiento geológico; Reservorios geológicos.Resumen
Este estudio se centra en cómo los campos de petróleo y gas agotados pueden utilizarse como reservorios geológicos para apoyar la transición hacia sistemas energéticos sostenibles y de bajo carbono. Estos reservorios, fundamentales para el almacenamiento de CO2 e hidrógeno, son cruciales para armonizar los objetivos duales de conservación ambiental y transición energética. Exploramos las características de estos campos agotados, evaluando su idoneidad para el almacenamiento tanto de CO2 como de hidrógeno, cada uno desempeñando roles de descarbonización distintos pero complementarios. El almacenamiento de CO2, facilitado por la tecnología de captura y almacenamiento de carbono (CCS), tiene como objetivo reducir los niveles atmosféricos de CO2, mitigando así el cambio climático. Paralelamente, el almacenamiento de hidrógeno en estos campos agotados surge como una solución estratégica para gestionar la intermitencia de fuentes de energía renovable como la eólica y la solar. Nuestro estudio parte de la premisa de utilizar campos de petróleo y gas agotados, evaluando su potencial y desafíos para el almacenamiento de CO2 e hidrógeno. Definimos criterios esenciales para evaluar la viabilidad de estos reservorios agotados, considerando la naturaleza distintiva del CO2 y el hidrógeno. La revisión de la literatura apoyó el análisis desarrollado en esta pesquisa, llevando a la creación de tres categorías de criterios — estructurales y tectónicos, almacenamiento y contención, e impacto y reactividad — que proporcionan un marco integral para evaluar la viabilidad de estos reservorios para ambos gases. Desde esta perspectiva, esta investigación pretende evaluar sistemáticamente cómo factores específicos como la porosidad y la permeabilidad influyen en la eficacia del almacenamiento de gas, identificando así parámetros esenciales para optimizar las soluciones de almacenamiento, ya sea de CO2 o de hidrógeno.
Citas
Al-Kindi, M. H., & Richard, P. D. (2014). The main structural styles of the hydrocarbon reservoirs in Oman. Geological Society, London, Special Publications, 392(1), 409–445. 10.1144/SP392.20
Al-Yaseri, A., Wolff-Boenisch, D., Fauziah, C. A., & Iglauer, S. (2021). Hydrogen wettability of clays: Implications for underground hydrogen storage. International Journal of Hydrogen Energy, 46(69), 34356–34361. 10.1016/j.ijhydene.2021.07.226
Amid, A., Mignard, D., & Wilkinson, M. (2016). Seasonal storage of hydrogen in a depleted natural gas reservoir. International Journal of Hydrogen Energy, 41(12), 5549–5558. 10.1016/j.ijhydene.2016.02.036
Anovitz, L. M., & Cole, D. R. (2015). Characterization and Analysis of Porosity and Pore Structures. Reviews in Mineralogy and Geochemistry, 80(1), 61–164. 10.2138/rmg.2015.80.04
Arnold, D., Demyanov, V., Rojas, T., & Christie, M. (2019). Uncertainty Quantification in Reservoir Prediction: Part 1—Model Realism in History Matching Using Geological Prior Definitions. Mathematical Geosciences, 51(2), 209–240. 10.1007/s11004-018-9774-6
Badawy, A. M., & Ganat, T. A. A. O. (2022a). Permeability (pp. 35–56). 10.1007/978-3-030-87462-9_5
Badawy, A. M., & Ganat, T. A. A. O. (2022b). Porosity (pp. 17–28). 10.1007/978-3-030-87462-9_3
Bagdassarov, N. (2021). Density and Porosity. In Fundamentals of Rock Physics (pp. 28–65). Cambridge University Press. 10.1017/9781108380713.003
Bashir, A., Ali, M., Patil, S., Aljawad, M. S., Mahmoud, M., Al-Shehri, D., Hoteit, H., & Kamal, M. S. (2024). Comprehensive review of CO2 geological storage: Exploring principles, mechanisms, and prospects. Earth-Science Reviews, 249, 104672. 10.1016/j.earscirev.2023.104672
Bui, M., Adjiman, C. S., Bardow, A., Anthony, E. J., Boston, A., Brown, S., Fennell, P. S., Fuss, S., Galindo, A., Hackett, L. A., Hallett, J. P., Herzog, H. J., Jackson, G., Kemper, J., Krevor, S., Maitland, G. C., Matuszewski, M., Metcalfe, I. S., Petit, C., … Mac Dowell, N. (2018). Carbon capture and storage (CCS): the way forward. Energy & Environmental Science, 11(5), 1062–1176. 10.1039/C7EE02342A
Burtonshaw, J. E. J., Paluszny, A., Thomas, R. N., & Zimmerman, R. W. (2022, June 26). The Influence of Hydraulic Fluid Properties on Induced Seismicity During Underground Hydrogen Storage. All Days. 10.56952/ARMA-2022-0614
Cachola, C. da S., Ciotta, M., Azevedo dos Santos, A., & Peyerl, D. (2023). Deploying of the carbon capture technologies for CO2 emission mitigation in the industrial sectors. Carbon Capture Science & Technology, 7, 100102. 10.1016/j.ccst.2023.100102
Cao, C., Liu, H., Hou, Z., Mehmood, F., Liao, J., & Feng, W. (2020). A Review of CO2 Storage in View of Safety and Cost-Effectiveness. Energies, 13(3), 600. 10.3390/en13030600
Chabab, S., Théveneau, P., Coquelet, C., Corvisier, J., & Paricaud, P. (2020). Measurements and predictive models of high-pressure H2 solubility in brine (H2O+NaCl) for underground hydrogen storage application. International Journal of Hydrogen Energy, 45(56), 32206–32220. 10.1016/j.ijhydene.2020.08.192
Chalbaud, C., Robin, M., Lombard, J.-M., Martin, F., Egermann, P., & Bertin, H. (2009). Interfacial tension measurements and wettability evaluation for geological CO2 storage. Advances in Water Resources, 32(1), 98–109. 10.1016/j.advwatres.2008.10.012
Chang, Q., Dempsey, D., Zhang, L., Zhao, Y., & Huang, L. (2024). Molecular dynamics insights into gas-water interfacial tension: Optimizing hydrogen storage in subsurface conditions. International Journal of Hydrogen Energy, 64, 896–905. 10.1016/j.ijhydene.2024.03.341
Chen, M., Zhang, Y., Liu, S., Zhao, C., Dong, S., & Song, Y. (2023). CO2 transport and carbonate precipitation in the coupled diffusion-reaction process during CO2 storage. Fuel, 334, 126805. 10.1016/j.fuel.2022.126805
Cheng, Y., Liu, W., Xu, T., Zhang, Y., Zhang, X., Xing, Y., Feng, B., & Xia, Y. (2023). Seismicity induced by geological CO2 storage: A review. Earth-Science Reviews, 239, 104369. 10.1016/j.earscirev.2023.104369
Ding, S., Xi, Y., Jiang, H., & Liu, G. (2018). CO2 storage capacity estimation in oil reservoirs by solubility and mineral trapping. Applied Geochemistry, 89, 121–128. 10.1016/j.apgeochem.2017.12.002
Farokhpoor, R., Bjørkvik, B. J. A., Lindeberg, E., & Torsæter, O. (2013). Wettability behaviour of CO2 at storage conditions. International Journal of Greenhouse Gas Control, 12, 18–25. 10.1016/j.ijggc.2012.11.003
Fatah, A., Amao, A., Abu-Mahfouz, I. S., & Al-Yaseri, A. (2024). Geochemical Reactions of High Total Organic Carbon Oil Shale during CO 2 Treatment Relevant to Subsurface Carbon Storage. Energy & Fuels, 38(2), 1161–1172. 10.1021/acs.energyfuels.3c03958
Global CCS Institute. (2023). Global Status of CCS Report 2023. Retrieved from https://status23.globalccsinstitute.com/new-facilities/
Hassanpouryouzband, A., Joonaki, E., Edlmann, K., & Haszeldine, R. S. (2021). Offshore Geological Storage of Hydrogen: Is This Our Best Option to Achieve Net-Zero? ACS Energy Letters, 6(6), 2181–2186. 10.1021/acsenergylett.1c00845
Heinemann, N., Booth, M. G., Haszeldine, R. S., Wilkinson, M., Scafidi, J., & Edlmann, K. (2018). Hydrogen storage in porous geological formations – onshore play opportunities in the midland valley (Scotland, UK). International Journal of Hydrogen Energy, 43(45), 20861–20874. 10.1016/j.ijhydene.2018.09.149
Higgs, S., Da Wang, Y., Sun, C., Ennis-King, J., Jackson, S. J., Armstrong, R. T., & Mostaghimi, P. (2022). In-situ hydrogen wettability characterisation for underground hydrogen storage. International Journal of Hydrogen Energy, 47(26), 13062–13075. 10.1016/j.ijhydene.2022.02.022
Hu, Q., Wang, Q., Zhang, T., Zhao, C., Iltaf, K. H., Liu, S., & Fukatsu, Y. (2023). Petrophysical properties of representative geological rocks encountered in carbon storage and utilization. Energy Reports, 9, 3661–3682. 10.1016/j.egyr.2023.02.020
IEA. (2024). Energy Technology Perspectives, Scenarios and Strategies to 2050. Retrieved from https://www.iea.org/reports/energy-technology-perspectives-2020
Iordache, I., Schitea, D., Gheorghe, A. V., & Iordache, M. (2014). Hydrogen underground storage in Romania, potential directions of development, stakeholders and general aspects. International Journal of Hydrogen Energy, 39(21), 11071–11081. 10.1016/j.ijhydene.2014.05.067
Janjua, S. Y., & Khan, M. R. (2023). Environmental implications of offshore oil and gas decommissioning options: an eco-efficiency assessment approach. Environment, Development and Sustainability, 25(11), 12915–12944. 10.1007/s10668-022-02595-x
Jeon, J., & Kim, S. J. (2020). Recent Progress in Hydrogen Flammability Prediction for the Safe Energy Systems. Energies, 13(23), 6263. 10.3390/en13236263
Khudaida, K. J., & Das, D. B. (2020). A Numerical Analysis of the Effects of Supercritical CO2 Injection on CO2 Storage Capacities of Geological Formations. Clean Technologies, 2(3), 333–364. 10.3390/cleantechnol2030021
Li, Q., & Liu, G. (2016). Risk Assessment of the Geological Storage of CO2: A Review. In Geologic Carbon Sequestration (pp. 249–284). Cham: Springer International Publishing. 10.1007/978-3-319-27019-7_13
Liang, Y., Tsuji, S., Jia, J., Tsuji, T., & Matsuoka, T. (2017). Modeling CO 2 –Water–Mineral Wettability and Mineralization for Carbon Geosequestration. Accounts of Chemical Research, 50(7), 1530–1540. 10.1021/acs.accounts.7b00049
Liu, J., Wang, S., Javadpour, F., Feng, Q., & Cha, L. (2022). Hydrogen Diffusion in Clay Slit: Implications for the Geological Storage. Energy & Fuels, 36(14), 7651–7660. 10.1021/acs.energyfuels.2c01189
Liu, Q., Zhu, D., Jin, Z., Tian, H., Zhou, B., Jiang, P., Meng, Q., Wu, X., Xu, H., Hu, T., & Zhu, H. (2023). Carbon capture and storage for long-term and safe sealing with constrained natural CO2 analogs. Renewable and Sustainable Energy Reviews, 171, 113000. 10.1016/j.rser.2022.113000
Loria, P., & Bright, M. B. H. (2021). Lessons captured from 50 years of CCS projects. The Electricity Journal, 34(7), 106998. 10.1016/j.tej.2021.106998
Lysyy, M., Fernø, M., & Ersland, G. (2021). Seasonal hydrogen storage in a depleted oil and gas field. International Journal of Hydrogen Energy, 46(49), 25160–25174. 10.1016/j.ijhydene.2021.05.030
Matos, C. R., Carneiro, J. F., & Silva, P. P. (2019). Overview of Large-Scale Underground Energy Storage Technologies for Integration of Renewable Energies and Criteria for Reservoir Identification. Journal of Energy Storage, 21, 241–258. 10.1016/j.est.2018.11.023
Matter, J. M., Stute, M., Snæbjörnsdottir, S. Ó., Oelkers, E. H., Gislason, S. R., Aradottir, E. S., Sigfusson, B., Gunnarsson, I., Sigurdardottir, H., Gunnlaugsson, E., Axelsson, G., Alfredsson, H. A., Wolff-Boenisch, D., Mesfin, K., Taya, D. F. de la R., Hall, J., Dideriksen, K., & Broecker, W. S. (2016). Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science, 352(6291), 1312–1314. 10.1126/science.aad8132
Mendes, C. (2022). O que é uma revisão narrativa de literatura: exemplos e considerações da metodologia.
Metz, B., Davidson, O., de Coninck, H., Loos, M., & Meyer, L. (2005). IPCC Special Report on Carbon dioxide Capture and Storage.
Mito, S., & Xue, Z. (2011). Post-Injection monitoring of stored CO2 at the Nagaoka pilot site: 5 years time-lapse well logging results. Energy Procedia, 4, 3284–3289. 10.1016/j.egypro.2011.02.248
Muhammed, N. S., Haq, M. B., Al Shehri, D. A., Al-Ahmed, A., Rahman, M. M., Zaman, E., & Iglauer, S. (2023). Hydrogen storage in depleted gas reservoirs: A comprehensive review. Fuel, 337, 127032. 10.1016/j.fuel.2022.127032
Nielsen, L. C., Bourg, I. C., & Sposito, G. (2012). Predicting CO2–water interfacial tension under pressure and temperature conditions of geologic CO2 storage. Geochimica et Cosmochimica Acta, 81, 28–38. 10.1016/j.gca.2011.12.018
Olabi, A. G., Bahri, A. saleh, Abdelghafar, A. A., Baroutaji, A., Sayed, E. T., Alami, A. H., Rezk, H., & Abdelkareem, M. A. (2021). Large-vscale hydrogen production and storage technologies: Current status and future directions. International Journal of Hydrogen Energy, 46(45), 23498–23528. 10.1016/j.ijhydene.2020.10.110
Omrani, S., Ghasemi, M., Mahmoodpour, S., Shafiei, A., & Rostami, B. (2022). Insights from molecular dynamics on CO2 diffusion coefficient in saline water over a wide range of temperatures, pressures, and salinity: CO2 geological storage implications. Journal of Molecular Liquids, 345, 117868. 10.1016/j.molliq.2021.117868
Osman, A. I., Mehta, N., Elgarahy, A. M., Hefny, M., Al-Hinai, A., Al-Muhtaseb, A. H., & Rooney, D. W. (2022). Hydrogen production, storage, utilisation and environmental impacts: a review. Environmental Chemistry Letters, 20(1), 153–188. 10.1007/s10311-021-01322-8
Osmundsen, P., & Tveterås, R. (2003). Decommissioning of petroleum installations—major policy issues. Energy Policy, 31(15), 1579–1588. 10.1016/S0301-4215(02)00224-0
Pan, B., Yin, X., Ju, Y., & Iglauer, S. (2021). Underground hydrogen storage: Influencing parameters and future outlook. Advances in Colloid and Interface Science, 294, 102473. 10.1016/j.cis.2021.102473
Perera, M. S. A. (2023). A review of underground hydrogen storage in depleted gas reservoirs: Insights into various rock-fluid interaction mechanisms and their impact on the process integrity. Fuel, 334, 126677. 10.1016/j.fuel.2022.126677
Priolo, E., Romanelli, M., Plasencia Linares, M. P., Garbin, M., Peruzza, L., Romano, M. A., Marotta, P., Bernardi, P., Moratto, L., Zuliani, D., & Fabris, P. (2015). Seismic Monitoring of an Underground Natural Gas Storage Facility: The Collalto Seismic Network. Seismological Research Letters, 86(1), 109–123. 10.1785/0220140087
Safari, A., Zeng, L., Nguele, R., Sugai, Y., & Sarmadivaleh, M. (2022). Review on using the depleted gas reservoirs for the underground H2 storage: A case study in Niigata prefecture, Japan. International Journal of Hydrogen Energy. 10.1016/j.ijhydene.2022.12.108
Sapiie, B., Danio, H., Priyono, A., Asikin, A. R., Widarto, D. S., Widianto, E., & Tsuji, T. (2015). Geological characteristic and fault stability of the Gundih CCS pilot project at central Java, Indonesia. Proceedings of the 12th SEGJ International Symposium, Tokyo, Japan, 18-20 November 2015, 110–113. 10.1190/segj122015-029
Shukla, R., Ranjith, P., Haque, A., & Choi, X. (2010). A review of studies on CO2 sequestration and caprock integrity. Fuel, 89(10), 2651–2664. 10.1016/j.fuel.2010.05.012
Sorai, M., Lei, X., Nishi, Y., Ishido, T., & Nakao, S. (2022). CO2 Geological Storage. In Handbook of Climate Change Mitigation and Adaptation (pp. 1531–1584). Cham: Springer International Publishing. 10.1007/978-3-030-72579-2_85
SpringerMaterials. (2024a). Carbon Dioxide. Retrieved from https://materials.springer.com/substanceprofile/docs/smsid_opysrkklmfnjkqqv
SpringerMaterials. (2024b). Dihydrogen. Retrieved from https://materials.springer.com/substanceprofile/docs/smsid_izescefequkgdfgz
Stephenson, M. H., Ringrose, P., Geiger, S., Bridden, M., & Schofield, D. (2019). Geoscience and decarbonization: current status and future directions. Petroleum Geoscience, 25(4), 501–508. 10.1144/petgeo2019-084
Tajnik, T., Bogataj, L. K., Jurač, E., Lasnik, C. R., Likar, J., & Debelak, B. (2013). Investigation of adsorption properties of geological materials for CO 2 storage. International Journal of Energy Research, 37(8), 952–958. 10.1002/er.2901
Tarkowski, R. (2017). Perspectives of using the geological subsurface for hydrogen storage in Poland. International Journal of Hydrogen Energy, 42(1), 347–355. 10.1016/j.ijhydene.2016.10.136
Tarkowski, R. (2019). Underground hydrogen storage: Characteristics and prospects. Renewable and Sustainable Energy Reviews and Sustainable Energy Reviews, 105, 86–94.
Tarkowski, R., Uliasz-Misiak, B., & Tarkowski, P. (2021). Storage of hydrogen, natural gas, and carbon dioxide – Geological and legal conditions. International Journal of Hydrogen Energy, 46(38), 20010–20022. 10.1016/j.ijhydene.2021.03.131
Thomas, K. M. (2007). Hydrogen adsorption and storage on porous materials☆. Catalysis Today, 120(3-4), 389–398. 10.1016/j.cattod.2006.09.015
Tilford, N. R., Cannon, R. P., & Saleem, Z. A. (1983). Tectonic stability aspects of high-level radioactive waste repository siting and licensing. Waste Management Conference, 3.
Tomić, L., Karović-Maričić, V., Danilović, D., & Crnogorac, M. (2018). Criteria for CO2 storage in geological formations. Podzemni Radovi, 32. 10.5937/PodRad1832061T
Uliasz-Misiak, B., Lewandowska-Śmierzchalska, J., & Matuła, R. (2021). Selection of Underground Hydrogen Storage Risk Assessment Techniques. Energies, 14(23), 8049. 10.3390/en14238049
Vargaftik, N. B. (1975). Handbook of physical properties of liquids and gases - pure substances and mixtures.
Verga, F. (2018). What’s Conventional and What’s Special in a Reservoir Study for Underground Gas Storage. Energies, 11(5), 1245. 10.3390/en11051245
Wang, J., Samara, H., Ko, V., Rodgers, D., Ryan, D., & Jaeger, P. (2023). Analysis of the Impact of CO 2 Adsorption on Rock Wettability for Geological Storage of CO 2. Energy & Fuels, 37(18), 14046–14052. 10.1021/acs.energyfuels.3c00909
Wang, T., Yang, C., Ma, H., Daemen, J. J. K., & Wu, H. (2015). Safety evaluation of gas storage caverns located close to a tectonic fault. Journal of Natural Gas Science and Engineering, 23, 281–293. 10.1016/j.jngse.2015.02.005
Wei, B., Wang, B., Li, X., Aishan, M., & Ju, Y. (2023). CO2 storage in depleted oil and gas reservoirs: A review. Advances in Geo-Energy Research, 9(2), 76–93. 10.46690/ager.2023.08.02
Witkowski, A., Rusin, A., Majkut, M., & Stolecka, K. (2017). Comprehensive analysis of hydrogen compression and pipeline transportation from thermodynamics and safety aspects. Energy, 141, 2508–2518. 10.1016/j.energy.2017.05.141
Yang, F., Wang, T., Deng, X., Dang, J., Huang, Z., Hu, S., Li, Y., & Ouyang, M. (2021). Review on hydrogen safety issues: Incident statistics, hydrogen diffusion, and detonation process. International Journal of Hydrogen Energy, 46(61), 31467–31488. 10.1016/j.ijhydene.2021.07.005
Yang, N., Deng, J., Wang, C., Bai, Z., & Qu, J. (2024). High pressure hydrogen leakage diffusion: Research progress. International Journal of Hydrogen Energy, 50, 1029–1046. 10.1016/j.ijhydene.2023.08.221
Zhang, C., & Wang, M. (2023). CO2/brine interfacial tension for geological CO2 storage: A systematic review. Journal of Petroleum Science and Engineering, 220, 111154. 10.1016/j.petrol.2022.111154
Zhang, K., Jin, Z., Li, G., Liu, Q., & Tian, L. (2023). Gas adsorptions of geological carbon storage with enhanced gas recovery. Separation and Purification Technology, 311, 123260. 10.1016/j.seppur.2023.123260
Zhang, S., & DePaolo, D. J. (2017). Rates of CO 2 Mineralization in Geological Carbon Storage. Accounts of Chemical Research, 50(9), 2075–2084. 10.1021/acs.accounts.7b00334
Zhong, H., Wang, Z., Zhang, Y., Suo, S., Hong, Y., Wang, L., & Gan, Y. (2024). Gas storage in geological formations: A comparative review on carbon dioxide and hydrogen storage. Materials Today Sustainability, 100720. 10.1016/j.mtsust.2024.100720
Zhu, H., Ju, Y., Qi, Y., Huang, C., & Zhang, L. (2018). Impact of tectonism on pore type and pore structure evolution in organic-rich shale: Implications for gas storage and migration pathways in naturally deformed rocks. Fuel, 228, 272–289. 10.1016/j.fuel.2018.04.137
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Mariana Ciotta; Colombo Celso Gaeta Tassinari
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.